The large generation of agricultural residue could pose an environmental issue that lies through the disposal problem. Therefore, the incorporation of rice husk ash (RHA) into the membrane formulation could curb this problem besides adding value to the biomass. Rice husk ash is widely used as a filler for a polymer composite to enhance its mechanical properties due to the presence of silica. This research incorporated RHA into the membrane formulation. The silica in the RHA was extracted using an acid-leaching process and dried into silica powder. The silica powder was characterised by using an X-Ray diffractometer (XRD) and X-Ray fluorescence (XRF). A sol-gel method with hydrochloric acid as the catalyst was used in the fabrication of polysulfone/chitosan/polyvinyl alcohol membrane, and the extracted silica powder was incorporated in the formulations. The membranes were characterised in terms of functional groups using Fourier Transform Infrared Spectroscopy (FTIR), surface morphology using Scanning Electron Emission (SEM) analysis, and surface hydrophilicity using contact angle analysis. Finally, the performance of the membrane was analysed by pure water flux and antifouling. The XRD and XRF results showed that the extracted silica powder contained 77% of silica with the absence of impurities. The cross-linking reaction of membranes occurred as the Si–O–C bond was detected at 1,105cm−1 after the FTIR analysis, and a compact structure of the membrane was detected from the SEM analysis. The results from pure water flux portrayed that the membranes incorporated with silica (M1 and M2) had better integral stability compared to that from the pure polymer, which was observed from the consistent value of flux throughout the 1-hour filtration time and no swelling of the membranes after the performance testing. The results also showed that the extraction of silica from the RHA using a modified process was successfully conducted, and the silica powder was also compatible with the membrane solution as no separate layer was formed. Thus, the produced membranes have the potential to be used in the treatment of wastewater containing heavy metal ions.
Silica/silicate scale is a significant problem, especially in oilfield production during Alkaline Surfactant Polymer (ASP) flooding, where chemical inhibitors are the preferred method to prevent them. In this study, the effect of inhibitor vinyl sulfonated copolymer (VS-Co) on silica/silicate scale formation was analysed using X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).The functional group type of VS-Co are sulfonate ions, SO3-, and these interact in the scaling process. Bulk-inhibited scaling brine tests were conducted at 60C and pH 8.5. During these tests, the silicon brine (with VS-Co) representing the inhibited ASP leachate was mixed with a magnesium brine representing the connate water to replicate reservoir conditions during ASP flooding. The samples tested in this study were non-inhibited Si/Mg mixed brine of 60 ppm Mg2+ and 940 ppm Si4+ (60Mg:940Si) as a blank, and inhibited 60Mg:940Si mixture with various VS-Co concentrations of 20 ppm, 50 ppm, and 100 ppm. The inhibition efficiency of the VS-Co was determined, followed by the characterisation study of the silica/silicate scale deposited from both test conditions.The IR spectra of all 60Mg:940Si samples show a similar peak at 1050 cm-1 to 1080 cm-1, attributed to a Si-O covalent bond and a band at 790 cm-1 to 800 cm-1 showing the presence of Si-O-Si stretching. XRD patterns produced a broad scattering peak for all samples at 2 of 24 showing that the samples are amorphous silica. For tests of high Mg2+ in the brine mix, 900Mg:940Si, a mix of crystalline silica and crystalline magnesium silicate was produced. Based on these results, it can be concluded that the scale formed even with 100 ppm of VS-Co present. Further studies are required to address how to mitigate scale formation effectively in the future.Based on the research conducted, we can conclude that the VS-Co alone could not significantly inhibit the formation of silica/silicate scale even at the highest concentration (100 ppm) of VS-Co. However, having VS-Co present caused an alteration in IR spectra frequency which requires further investigation to assess how best to develop the inhibiting properties of the VS-Co product. The application of nanoparticles and their successful stories spark the interest of authors in searching for an efficient method of managing the silica/silicate scale where the modification of potential scale inhibitor (SI) with nanoparticles may be able to improve the inhibition efficiency towards the silicate/silicate scale.The presence of VS-Co in the scaling brine only slightly inhibits the Mg2+ ion (initially comes from connate water) from reacting. It is worth further investigation on how this VS-Co can make it happen. Hence, the functional groups responsible for this may be altered by adding other functional groups to provide a synergistic effect in preventing this silica/silicate scale; or by modifying the VS-Co with nanoparticles to improve their adsorption/desorption capacity.The newly developed technique in analysing the inhibition mechanism of a chemical inhibitor using various spectroscopic analysis is promising where an alteration in the spectra may provide proof of the chemicals inhibition efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.