Alcohol-induced fatty liver, a major cause of morbidity, has been attributed to enhanced hepatic lipogenesis and decreased fat clearance of unknown mechanism. Here we report that the steatosis induced in mice by a low-fat, liquid ethanol diet is attenuated by concurrent blockade of cannabinoid CB1 receptors. Global or hepatocyte-specific CB1 knockout mice are resistant to ethanol-induced steatosis and increases in lipogenic gene expression and have increased carnitine palmitoyltransferase 1 activity, which, unlike in controls, is not reduced by ethanol treatment. Ethanol feeding increases the hepatic expression of CB1 receptors and upregulates the endocannabinoid 2-arachidonoylglycerol (2-AG) and its biosynthetic enzyme diacylglycerol lipase beta selectively in hepatic stellate cells. In control but not CB1 receptor-deficient hepatocytes, coculture with stellate cells from ethanol-fed mice results in upregulation of CB1 receptors and lipogenic gene expression. We conclude that paracrine activation of hepatic CB1 receptors by stellate cell-derived 2-AG mediates ethanol-induced steatosis through increasing lipogenesis and decreasing fatty acid oxidation.
Background and Aims-Signal transducer and activator of transcription 3 (STAT3) is known to be activated in human alcoholic liver disease, but its role in the pathogenesis of alcoholic liver injury remains obscure.
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases worldwide, causing fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. In the past few decades, significant progress has been made in our understanding of the molecular mechanisms underlying alcoholic liver injury. Activation of innate immunity components such as Kupffer cells, LPS/TLR4, and complements in response to alcohol exposure plays a key role in the development and progression of alcoholic liver disease (ALD). LPS activation of Kupffer cells also produces IL-6 and IL-10 that may play a protective role in ameliorating ALD. IL-6 activates signal transducer and activator of transcription 3 (STAT3) in hepatocytes and sinusoidal endothelial cells, while IL-10 activates STAT3 in Kupffer cells/macrophages, subsequently protecting against ALD. In addition, alcohol consumption also inhibits some components of innate immunity such as natural killer (NK) cells, a type of cells that play key roles in anti-viral, anti-tumor, and anti-fibrotic defenses in the liver. Ethanol inhibition of NK cells likely contributes significantly to the pathogenesis of ALD. Understanding the roles of innate immunity and cytokines in alcoholic liver injury may provide insight into novel therapeutic targets in the treatment of alcoholic liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.