Cisplatin is a widely used antineoplastic agent that has nephrotoxicity as a major side effect. The underlying mechanism of this nephrotoxicity is still not well known. Iron has been implicated to play an important role in several models of tissue injury, presumably through the generation of hydroxyl radicals via the Haber-Weiss reaction or other highly toxic free radicals. In the present study we examined the catalytic iron content and the effect of iron chelators in an in vitro model of cisplatin-induced cytotoxicity in LLC-PK1 cells (renal tubular epithelial cells) and in an in vivo model of cisplatin-induced acute renal failure in rats. Exposure of LLC-PK1 cells to cisplatin resulted in a significant increase in bleomycin-detectable iron (iron capable of catalyzing free radical reactions) released into the medium. Concurrent incubation of LLC-PK1 cells with iron chelators including deferoxamine and 1,10-phenanthroline significantly attenuated cisplatin-induced cytotoxicity as measured by lactate dehydrogenase (LDH) release. Bleomycin-detectable iron content was also markedly increased in the kidney of rats treated with cisplatin. Similarly, administration of deferoxamine in rats provided marked functional (as measured by blood urea nitrogen and creatinine) and histological protection against cisplatin-induced acute renal failure. In a separate study, we examined the role of hydroxyl radical in cisplatin-induced nephrotoxicity. Incubation of LLC-PK1 cells with cisplatin caused an increase in hydroxyl radical formation. Hydroxyl radical scavengers, dimethyl sulfoxide, mannitol and benzoic acid, significantly reduced cisplatin-induced cytotoxicity and, treatment with dimethyl sulfoxide or dimethylthiourea provided significant protection against cisplatin-induced acute renal failure. Taken together, our data strongly support a critical role for iron in mediating tissue injury via hydroxyl radical (or a similar oxidant) in this model of nephrotoxicity.
Over the last decade, there is accumulating evidence for a role of reactive oxygen metabolites in the pathogenesis of a variety of renal diseases, including gentamicin, glycerol, cisplatin, and cyclosporine A models of toxic acute renal failure. Gentamicin has been shown both in in vitro and in vivo studies to enhance the generation of reactive oxygen metabolites. Iron is important in models of tissue injury, presumably because it is capable of catalyzing free-radical formation. Gentamicin has been shown to cause release of iron from renal cortical mitochondria. Scavengers of reactive oxygen metabolites as well as iron chelators provide protection in gentamicin-induced nephrotoxicity. In glycerol-induced acute renal failure, an animal model of rhabdomyolysis, there is enhanced generation of hydrogen peroxide, and scavengers of reactive oxygen metabolites and iron chelators provide protection. Although the dogma is that the myoglobin is the source of iron, recent studies suggest that cytochrome P450 may be an important source of iron in this model. In addition, there are marked alterations in antioxidant defenses, such as glutathione, as well as changes in heme oxygenase. Several recent in vitro and in vivo studies indicate an important role of reactive oxygen metabolites in cisplatin-induced nephrotoxicity. Thus, catalytic iron is increased both in vitro and in vivo by cisplatin, and iron chelators as well as hydroxyl radical scavengers have been shown to be protective. Recent studies indicate that cytochrome P450 may also be an important source of the catalytic iron in cisplatin nephrotoxicity. Cyclosporine A has been shown to enhance generation of hydrogen peroxide in vitro and enhance lipid peroxidation in vitro and in vivo. Antioxidants have been shown to be protective in cyclosporine A nephrotoxicity. This collective body of evidence suggests an important role for reactive oxygen metabolites in toxic acute renal failure and may provide therapeutic opportunities of preventing or treating acute renal failure in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.