The rapid shape change in Zr isotopes near neutron number N=60 is identified to be caused by type II shell evolution associated with massive proton excitations to its 0g_{9/2} orbit, and is shown to be a quantum phase transition. Monte Carlo shell-model calculations are carried out for Zr isotopes of N=50-70 with many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and B(E2) values are obtained within a single framework in good agreement with experiment, depicting various shapes in going from N=50 to 70. The novel coexistence of prolate and triaxial shapes is suggested.
We show how shape transitions in the neutron-rich exotic Si and S isotopes occur in terms of shell-model calculations with a newly constructed Hamiltonian based on VMU interaction. We first compare the calculated spectroscopic-strength distributions for the proton 0d 5/2,3/2 and 1s 1/2 orbitals with results extracted from a 48 Ca(e,e'p) experiment to show the importance of the tensorforce component of the Hamiltonian. Detailed calculations for the excitation energies, B(E2) and two-neutron separation energies for the Si and S isotopes show excellent agreement with experimental data. The potential energy surface exhibits rapid shape transitions along the isotopic chains towards N =28 that are different for Si and S. We explain the results in terms of an intuitive picture involving a Jahn-Teller-type effect that is sensitive to the tensor-force-driven shell evolution. The closed sub-shell nucleus 42 Si is a particularly good example of how the tensor-force-driven Jahn-Teller mechanism leads to a strong oblate rather than spherical shape.
The shapes of neutron-rich exotic Ni isotopes are studied. Large-scale shell model calculations are performed by advanced Monte Carlo Shell Model (MCSM) for the pf -g 9/2 -d 5/2 model space. Experimental energy levels are reproduced well by a single fixed Hamiltonian. Intrinsic shapes are analyzed for MCSM eigenstates. Intriguing interplays among spherical, oblate, prolate and γunstable shapes are seen, including shape fluctuations, E(5)-like situation, the magicity of doublymagic 56,68,78 Ni, and the coexistence of spherical and strongly deformed shapes. Regarding the last point, strong deformation and change of shell structure can take place simultaneously, being driven by the combination of the tensor force and changes of major configurations within the same nucleus.
We present a newly enhanced version of the Monte Carlo Shell Model method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new generation framework of the MCSM provides us with a powerful tool to perform most-advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using the conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. * )
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.