Long-Evans Cinnamon (LEC) rats, an inbred strain of a mutant rat isolated from Long-Evans rats, develop hereditary hepatitis. To elucidate the role of copper metabolism in the development of the hepatitis in LEC rats, we examined the copper concentration in the tissues and serum levels of copper and ceruloplasmin. Copper concentration in the liver of LEC rats was over 40 times that of normal Long-Evans Agouti (LEA) rats, while the serum ceruloplasmin and copper concentrations in LEC rats decreased significantly. The hepatocytes of LEC rats show steatosis in cytoplasm and pleomorphism of mitochondria, resembling the histologic features of the liver in Wilson's disease. These findings suggest that the hereditary hepatitis in LEC rats is closely associated with copper toxicity, and may be dealing with a rat form of Wilson's disease. Thus the LEC rats will provide a unique and useful animal model for clarifying the mechanism and for developing treatment strategies for Wilson's disease and other abnormal copper metabolism in humans. (J. Clin. Invest. 1991. 87:1858-1861
A new mutant causing hereditary hepatitis associated with severe jaundice has been discovered in the LEC strain of rats. Hepatitis appears suddenly in adult rats three to four months after birth. The clinical signs of hepatitis are characterized by severe jaundice, subcutaneous bleeding, oliguria, and loss of body weight. The affected rats showed a high lethality and histological changes of the liver with focal necrosis of enlarged hepatocytes without inflammatory cell response. Genetic tests indicate that at least a single autosomal recessive gene is responsible for the major cause of hepatitis. Furthermore, liver cancer appears in long survived rats after recovery from jaundice as well as a few asymptomatic rats without jaundice. The LEC rats thus provide an animal model useful for the basic and clinical studies of hepatitis and liver cancer, including their pathogenesis, prevention, and treatment.
Summary The QR regressor tumour (QR-32), a fibrosarcoma which is unable to grow progressively in normal syngeneic C57BL/6 mice, was able to grow progressively in 13 out of 22 mice (59%) when it was subcutaneously coimplanted with gelatin sponge. We established four culture tumour lines from the resultant tumours (QRsP tumour lines). These QRsP tumour lines were able to grow progressively in mice even in the absence of gelatin sponge. The ability of QRsP tumour cells to colonise the lungs after intravenous injection and to produce high amounts of prostaglandin E2 (PGE2) during in vitro cell culture was much greater than that of parent QR-32 cells. These biological characteristics of QR-32 cells and QRsP tumour cells were found to be stable for at least 6 months when they were maintained in culture.We also observed that QR-32 cells were able to grow progressively in five out of 12 (42%) mice after coimplantation with plastic non-adherent peritoneal cells obtained from mice which had been intraperitoneally implanted with gelatin sponge. These host cells reactive to gelatin sponge increased the production of high amounts of PGE2 by QR-32 cells during 48 h coculture. Preliminary in vitro studies implicated the involvement of hydrogen peroxide and hydroxyl radical as some of the factors necessary to induce QR-32 cells to produce high amounts of PGE2 and to accelerate tumour progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.