Interleukin-17A (IL-17A) is a cytokine produced by T helper 17 (Th17) cells and plays important roles in the development of inflammatory diseases. Although IL-17F is highly homologous to IL-17A and binds the same receptor, the functional roles of this molecule remain largely unknown. Here, we demonstrated with Il17a(-/-), Il17f(-/-), and Il17a(-/-)Il17f(-/-) mice that IL-17F played only marginal roles, if at all, in the development of delayed-type and contact hypersensitivities, autoimmune encephalomyelitis, collagen-induced arthritis, and arthritis in Il1rn(-/-) mice. In contrast, both IL-17F and IL-17A were involved in host defense against mucoepithelial infection by Staphylococcus aureus and Citrobacter rodentium. IL-17A was produced mainly in T cells, whereas IL-17F was produced in T cells, innate immune cells, and epithelial cells. Although only IL-17A efficiently induced cytokines in macrophages, both cytokines activated epithelial innate immune responses. These observations indicate that IL-17A and IL-17F have overlapping yet distinct roles in host immune and defense mechanisms.
Dectin-2 (gene symbol Clec4n) is a C-type lectin expressed by dendritic cells (DCs) and macrophages. However, its functional roles and signaling mechanisms remain to be elucidated. Here, we generated Clec4n(-/-) mice and showed that this molecule is important for host defense against Candida albicans (C. albicans). Clec4n(-/-) DCs had virtually no fungal alpha-mannan-induced cytokine production. Dectin-2 signaling induced cytokines through an FcRgamma chain and Syk-CARD9-NF-kappaB-dependent signaling pathway without involvement of MAP kinases. The yeast form of C. albicans induced interleukin-1beta (IL-1beta) and IL-23 secretion in a Dectin-2-dependent manner. In contrast, cytokine production induced by the hyphal form was only partially dependent on this lectin. Both yeast and hyphae induced Th17 cell differentiation, in which Dectin-2, but not Dectin-1, was mainly involved. Because IL-17A-deficient mice were highly susceptible to systemic candida infection, this study suggests that Dectin-2 is important in host defense against C. albicans by inducing Th17 cell differentiation.
Dectin-1 is a C-type lectin involved in the recognition of beta-glucans found in the cell walls of fungi. We generated dectin-1-deficient mice to determine the importance of dectin-1 in the defense against pathogenic fungi. In vitro, beta-glucan-induced cytokine production from wild-type dendritic cells and macrophages was abolished in cells homozygous for dectin-1 deficiency ('dectin-1-knockout' cells). In vivo, dectin-1-knockout mice were more susceptible than wild-type mice to pneumocystis infection, even though their cytokine production was normal. However, pneumocystis-infected dectin-1-knockout macrophages did show defective production of reactive oxygen species. In contrast to those results, wild-type and dectin-1-knockout mice were equally susceptible to candida infection. Thus, dectin-1 is required for immune responses to some fungal infections, as protective immunity to pneumocystis, but not to candida, required dectin-1 for the production of antifungal reactive oxygen species.
Aire is an important regulator of immunological tolerance, operating in a minute subset of thymic stromal cells to induce transcripts encoding peptides that guide T-cell selection. Expression of Aire during a perinatal age-window is necessary and sufficient to prevent the multi-organ autoimmunity characteristic of Aire-deficient mice. We report that Aire promotes the perinatal generation of a distinct compartment of Foxp3+CD4+ regulatory T (Treg) cells, which stably persists in adult mice. This population has a role in maintaining self-tolerance, transcriptome and activation profile distinguishable from those of Tregs produced in adults. Underlying the distinct Treg populations are age-dependent, Aire-independent differences in the processing and presentation of thymic stromal-cell peptides, resulting in different T-cell receptor repertoires. Our findings expand the notion of a developmentally layered immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.