The use of grafts donated after cardiac death (DCD) would greatly contribute to the expansion of the donor organ pool. Machine perfusion (MP) is a promising technology to improve DCD liver grafts. Several perfusion technologies under various temperature and oxygenation conditions have been suggested and are still debated. It is important to confirm the relationship between oxygen consumption and organ conditions during MP. In this study, we analyzed oxygen consumption during oxygenated MP of porcine DCD liver grafts under different temperature conditions: hypothermic and subnormothermic. Grafts exposed to 60 min of warm ischemia were perfused for 4 h with a modified UW-gluconate perfusate under hypothermic (HMP) and subnormothermic conditions. Oxygen consumption, pressures of the portal vein and hepatic artery, and effluent enzymes were analyzed. Oxygen consumption was strongly related to the graft temperature during MP. Effluent enzyme level of the LDH were lower in the high oxygen consumption group than in the low oxygen consumption group during MP. In summary, we found that high oxygen consumption under subnormothermic temperature conditions has several advantages over HMP for DCD liver graft preservation.
BackgroundMachine perfusion techniques offer a solution to the serious organ shortage. However, to assess the effects of machine perfusion, many detailed studies are required. In this study, an ex vivo reperfusion model using diluted autologous blood was confirmed to evaluate the utility of machine preservation for livers donated after cardiac death (DCD). In particular, beneficial effects of the oxygenated hypothermic machine perfusion (HMP) for DCD porcine livers are evaluated.Material/MethodsPorcine livers were procured under warm ischemia time (WIT) of 60 min. The livers were preserved by hypothermic machine perfusion (HMP) or static cold storage (CS) for 4 h. After the preservation, the livers were perfused for 2 h using the ex vivo reperfusion model with diluted blood oxygenated by a membrane oxygenator at 35–38°C.ResultsAt 2 h of ex vivo reperfusion with 60 min of warm ischemic time (WIT), the portal vein pressure for CS was higher than HMP (18.8±15.9 vs. 7.5±3.9 [mmHg] in 60 min). Furthermore, LDH in CS was higher than HMP (528.5±149.8 vs. 194.1±32.2 [IU/L/100 g liver] in 60 min. P<0.05). Lactate after CS (60) was significantly higher than HMP (60) (8.67±0.39 vs. 5.68±0.60 [mmol/L] at 60 min. p<0.01).ConclusionsThe ex vivo reperfusion model can be used to evaluate the utility of machine perfusion. Advantages of HMP for DCD livers are evaluated with this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.