Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a “cation-stitching cascade”, including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.
Deprotonative directed ortho cupration of aromatic/heteroaromatic C-H bond and subsequent oxidation with t-BuOOH furnished functionalized phenols in high yields with high regio- and chemoselectivity. DFT calculations revealed that this hydroxylation reaction proceeds via a copper (I → III → I) redox mechanism. Application of this reaction to aromatic C-H amination using BnONH2 efficiently afforded the corresponding primary anilines. These reactions show broad scope and good functional group compatibility. Catalytic versions of these transformations are also demonstrated.
Bis(amido)argentate (TMP) 2 Ag(CN)Li 2 (3, TMP-Ag-ate; TMP ¼ 2,2,6,6-tetramethylpiperidido) was designed as a tool for chemoselective aromatic functionalization via unprecedented directed ortho argentation (DoAg). X-Ray crystallographic analysis showed that 3 takes a structure analogous to that of the corresponding Lipshutz cuprate. DoAg with this TMP-Ag-ate afforded multifunctional aromatics in high yields in processes that exhibited high chemoselectivity and compatibility with a wide range of functional groups. These included organometallics-and transition metal-susceptible substituents such as methyl ester, aldehyde, vinyl, iodo, (trifluoromethanesulfonyl)oxy and nitro groups. The arylargentates displayed good reactivity with various electrophiles. Chalcogen (S, Se, and Te) installation and azo coupling reactions also proceeded efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.