We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the trade-off between speed and accuracy, one which controls the selection of determinants to add to a variational wave function and one which controls the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3 × 10(14) and 2 × 10(22) determinants, respectively.
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.
Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method to achieve chemical accuracy for a wide range of systems, including the difficult Cr2 dimer. We demonstrate that such calculations for systems like Cr2 can be performed in just a few cpu hours. In addition our method also allows efficient calculation of excited state energies, for which we illustrate with benchmark results for the excited states of C2.Introduction: The scope of traditional approaches to full configuration interaction (FCI) has been limited to simple diatomic molecules [1,2], and there has been little progress in diagonalizing spaces much larger than a billion determinants in recent times [3][4][5]. However, recent progress in alternative approaches to FCI problems has increased the scope of FCI beyond simple diatomic molecules. Two techniques in particular have been important in this progress, full configuration quantum Monte Carlo (FCIQMC) [6], and density matrix renormalization group (DMRG) [7][8][9]. Both algorithms provide unique advantages, with DMRG being the definitive method for systems in which one can identify degrees of freedom with low levels of entanglement [10,11], and FCIQMC showing promise for molecules and extended systems in two or more dimensions [12,13]. The success of DMRG and FCIQMC in quantum chemistry is highlighted by their recent applications to unprecedented large-size determinant spaces while also achieving chemical accuracy [14][15][16][17][18][19][20][21][22][23].
The complete active space self-consistent field (CASSCF) method is the principal approach employed for studying strongly correlated systems. However, exact CASSCF can only be performed on small active spaces of ∼20 electrons in ∼20 orbitals due to exponential growth in the computational cost. We show that employing the Adaptive Sampling Configuration Interaction (ASCI) method as an approximate Full
Recent advances in selected CI, including the adaptive sampling configuration interaction (ASCI) algorithm and its heat bath extension, have made the ASCI approach competitive with the most accurate techniques available, and hence an increasingly powerful tool in solving quantum Hamiltonians. In this work, we show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques we present ASCI results applied to a large range of systems and basis sets in order to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double-and triple-zeta benchmark data for the G1 dataset. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets. arXiv:1807.00821v1 [physics.comp-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.