Background: Although 21 causative mutations have been associated with PRKAG2 syndrome, our understanding of the syndrome remains incomplete. The aim of this project is to further investigate its unique genetic background, clinical manifestations, and underlying structural changes. Methods: We recruited 885 hypertrophic cardiomyopathy (HCM) probands and their families internationally. Targeted next-generation sequencing of sudden cardiac death (SCD) genes was performed. The role of the identified variants was assessed using histological techniques and computational modeling. Findings: Twelve PRKAG2 syndrome kindreds harboring 5 distinct variants were identified. The clinical penetrance of 25 carriers was 100.0%. Twenty-two family members died of SCD or heart failure (HF). All probands developed bradycardia (HRmin, 36.3 § 9.8 bpm) and cardiac conduction defects, and 33% had evidence of atrial fibrillation/paroxysmal supraventricular tachycardia (PSVT) and 67% had ventricular preexcitation, respectively. Some carriers presented with apical hypertrophy, hypertension, hyperlipidemia, and renal insufficiency. Histological study revealed reduced AMPK activity and major cardiac channels in the heart tissue with K485E mutation. Computational modelling suggests that K485E disrupts the salt bridge connecting the b and g subunits of AMPK, R302Q/P decreases the binding affinity for ATP, T400N and H401D alter the orientation of H383 and R531 residues, thus altering nucleotide binding, and N488I and L341S lead to structural instability in the Bateman domain, which disrupts the intramolecular regulation.
Congenital heart defects (CHD) are the third leading cause of death in children <1 year of age in Mexico where there is a high prevalence of the 677C → T polymorphism of the MTHFR gene. This is important because the homozygous 677T/T MTHFR gene and deficiency of folic acid (FA) intake have been associated with CHD. Our objective was to analyze the possible association between the genotype 677T/T of the MTHFR gene and supplementation of FA in Mexican women with the presence of complex CHD in their children. We analyzed genotypes of 31 mothers of children with complex CHD (group I) and 62 mothers of healthy children (group II) and investigated FA supplementation during pregnancy in both study groups. Allele frequencies in group I were 41.9 % for C and 58.1 % for T and 22.6 % for genotype frequencies CC, 38.7 % for CT, and 38.7 % for TT. Allele frequencies in group II were 63.7 % for C and 36.3 % for T and 38.7 % for genotype frequencies CC, 50 % for CT and 11.3 % for TT. Both populations are in Hardy-Weinberg equilibrium. Odds ratio for having a child with a complex CHD was 5.9, p = 0.008 (95 % CI 1.67; 20.63) for the TT genotype. FA supplementation at any time during pregnancy was 90.3 and 87.9 % in groups II and I respectively (p > 0.05). Association was found between the maternal genotype (677/TT MTHFR) with the presence of complex CHD in their offspring. No differences in FA supplementation during any stage were found between groups.
The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH), in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP) isoproterenol (ISO) was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB), neonates (7–15 days) and young adults (6 weeks of age). Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR), alpha and beta myosins (α-MHC, β-MHC) and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS). Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.
Pentalogy of Cantrell is a rare disease. Approximately 185 cases have been reported around the world. The authors performed a retrospective study that reviewed the clinical files and pathological samples of 22 cases of pentalogy of Cantrell treated at the Hospital Infantil de México Federico Gómez. Thirteen patients had ectopia cordis associated with pentalogy of Cantrell (group I), and there were 9 cases without ectopia cordis (group II). In group I, the following types of congenital heart disease were found: single ventricle (4), double-outlet right ventricle (4), ventricular septal defect (3), aortic coarctation (1), and atrial septal defect (1). In group II, the following types of congenital heart disease were found: double-outlet right ventricle (3), double-inlet left ventricle (2), ventricular septal defect (2), tetralogy of Fallot (1), and hypoplastic right ventricle syndrome (1). Nine cases had a ventricular diverticulum (40%). Ten patients (45%) had some other congenital anomaly associated with pentalogy of Cantrell. Thirteen patients underwent surgery (59%), which included cardiac surgery in 10 cases (45%). Sixteen patients died (73%): 11 from group I and 5 from group II (P < .05). Little more than 50 years since it was first described, pentalogy of Cantrell remains a disease with high mortality, especially in patients with associated ectopia cordis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.