Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.
This paper presents a necessary and sufficient condition for the weak invariance property of a time-delayed system parametrized by a differential inclusion. The aforementioned condition generalizes the well-known Hamilton-Jacobi inequality that characterizes weakly invariant systems in the nondelay setting. The forward Euler approximation scheme used in the theory of discontinuous differential equations is extended to the time-delayed context by incorporating the delay and tail functions featuring the dynamics. Accordingly, an existence theorem of weakly invariant trajectories is established under the extended forward Euler approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.