Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25–30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/108 cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions.
The enzymatic detoxification of deoxynivalenol (DON) is a promising mitigation strategy for addressing this mycotoxin contamination of cereal grains. A recently described bacterium, Devosia mutans 17-2-E-8, capable of transforming DON into its non-toxic stereoisomer 3-epi-DON, holds promise for the development of such applications. Earlier observations suggested that DON epimerization proceeds via a two-step catalysis with 3-keto-DON as an intermediate. The results of this study indicate that NADPH is required for DON epimerization by cell-free protein extracts of D. mutans, while high concentrations of glucose and sucrose have a suppressive effect. Chemically synthesized 3-keto-DON incubated with D. mutans protein fractions enriched by ammonium sulfate precipitation at 35–55% saturation selectively reduced 3-keto-DON to 3-epi-DON, but fell short of supporting the complete epimerization of DON. In addition, seven Devosia species investigated for DON epimerization were all able to reduce 3-keto-DON to 3-epi-DON, but only a few were capable of epimerizing DON. The above observations collectively confirm that the enzymes responsible for the oxidation of DON to 3-keto-DON are physically separate from those involved in 3-keto-DON reduction to 3-epi-DON. The enzymatic nature of DON epimerization suggests that the process could be used to develop genetically engineered crops or microorganisms, ultimately reducing foodborne exposure of consumers and farm animals to DON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.