IMPORTANCE Whole-exome sequencing (WES) has the potential to reveal tumor and germline mutations of clinical relevance, but the diagnostic yield for pediatric patients with solid tumors is unknown. OBJECTIVE To characterize the diagnostic yield of combined tumor and germline WES for children with solid tumors. DESIGN Unselected children with newly diagnosed and previously untreated central nervous system (CNS) and non-CNS solid tumors were prospectively enrolled in the BASIC3 study at a large academic children鈥檚 hospital during a 23-month period from August 2012 through June 2014. Blood and tumor samples underwent WES in a certified clinical laboratory with genetic results categorized on the basis of perceived clinical relevance and entered in the electronic health record. MAIN OUTCOMES AND MEASURES Clinical categorization of somatic mutations; frequencies of deleterious germline mutations related to patient phenotype and incidental medically-actionable mutations. RESULTS Of the first 150 participants (80 boys and 70 girls, mean age, 7.4 years), tumor samples adequate for WES were available from 121 patients (81%). Somatic mutations of established clinical utility (category I) were reported in 4 (3%) of 121 patients, with mutations of potential utility (category II) detected in an additional 29 (24%) of 121 patients. CTNNB1 was the gene most frequently mutated, with recurrent mutations in KIT, TSC2, and MAPK pathway genes (BRAF, KRAS, and NRAS) also identified. Mutations in consensus cancer genes (category III) were found in an additional 24 (20%) of 121 tumors. Fewer than half of somatic mutations identified were in genes known to be recurrently mutated in the tumor type tested. Diagnostic germline findings related to patient phenotype were discovered in 15 (10%) of 150 cases: 13 pathogenic or likely pathogenic dominant mutations in adult and pediatric cancer susceptibility genes (including 2 each in TP53, VHL, and BRCA1), 1 recessive liver disorder with hepatocellular carcinoma (TJP2), and 1 renal diagnosis (CLCN5). Incidental findings were reported in 8 (5%) of 150 patients. Most patients harbored germline uncertain variants in cancer genes (98%), pharmacogenetic variants (89%), and recessive carrier mutations (85%). CONCLUSIONS AND RELEVANCE Tumor and germline WES revealed mutations in a broad spectrum of genes previously implicated in both adult and pediatric cancers. Combined reporting of tumor and germline WES identified diagnostic and/or potentially actionable findings in nearly 40% of newly diagnosed pediatric patients with solid tumors.
Progressive, irreversible fibrosis is one of the most clinically significant consequences of ionizing radiation on normal tissue. When applied to lungs, it leads to a complication described as idiopathic pneumonia syndrome (IPS) and eventually to organ fibrosis. For its high mortality, the condition precludes treatment with high doses of radiation. There is widespread interest to understand the pathogenetic mechanisms of IPS and to find drugs effective in the prevention of its development. This report summarizes our experience with the protective effects of L 158,809, an angiotensin II (ANG II) receptor blocker, and two angiotensin converting enzyme (ACE) inhibitors in the development of IPS and the role of transforming growth factor beta (TGF-beta) and of alpha-actomyosin (alpha SMA) in pathogenesis of radiation induced pulmonary fibrosis in an experimental model of bone marrow transplant (BMT). Male WAG/Riji/MCV rats received total body irradiation and a regimen of cyclophosphamide (CTX) in preparation for bone marrow transplant. While one group of animals remained untreated, the remainders were subdivided into three groups, each of them receiving either the ANG II receptor blocker or one of the two ACE inhibitors (Captopril or Enalapril). Each of the three drugs was administered orally from 11 days before the transplant up to 56 days post transplant. At sacrifice time the irradiated rats receiving only CTX showed a chronic pneumonitis with septal fibrosis and vasculitis affecting, in particular, small caliber pulmonary arteries and arterioles. Their lung content of hydroxyproline was also markedly elevated in association with the lung concentrations of thromboxane (TXA2) and prostaglandin (PGI(2)), (two markers of pulmonary endothelial damage). A significant increase of alpha actomyosin staining was observed in vessels, septa and macrophages of the same animals which also overexpressed TGF-beta. When L 158,809, Captopril and Enalapril were added to the radiation and cytoxan treatment, a significant amelioration of the histological damage as well as the overexpression of alpha SMA was observed. Lung concentrations of hydroxyproline, PGI(2), TXA2 and TGF-beta were also observed in these animals so that the values of these compounds were closer to those measured in untreated control rats than to their irradiated and cytoxan treated counterparts. Angiotensin II plays an important role in the regulation of TGF-beta and alpha SMA, two proteins involved in the pathogenesis of pulmonary fibrosis. The finding that ACE inhibitors or ANG II receptor blockers protect the lungs from radiation induced pneumonitis and fibrosis reaffirms the role that ANG II plays in this inflammatory process and suggests an additional indication of treatment of this condition, thus opening a new potential pharmacologic use of these drugs.
Thyroid nodules occur in 1-2% of children, and identifying which nodules are malignant is often challenging. Cytologic evaluation facilitates the diagnosis of thyroid lesions (TLs), but in 10-40% of cases the interpretation is indeterminate. Patients with indeterminate diagnoses are often treated with hemithyroidectomy followed by completion thyroidectomy, if cancer is found in the initial specimen. Exposing patients to multiple surgeries increases costs and morbidity. The American Thyroid Association states that a combination of molecular markers is likely to optimize the management of patients with indeterminate cytology. However, few studies have addressed the molecular alterations present in pediatric TL. Twenty-seven thyroid carcinomas from patients 10 to 19 years of age were tested for alterations common in adult TL, including BRAF V600E mutation, RET fusions, and TERT promoter mutations. Mutation-negative cases were subsequently analyzed with a next-generation sequencing (NGS) mutation panel to search for additional targets. Histologic diagnoses included 12 classic papillary thyroid carcinomas (PTCs), 13 follicular variant PTCs, 1 medullary thyroid carcinoma, and 1 follicular carcinoma. Fourteen cases showed lymph node involvement, and 13 cases demonstrated lymphovascular invasion. The BRAF V600E mutation was detected in 10/27 cases, and RET fusions were detected in 6/27 cases. No TERT promoter mutations were identified in any of the cases. The NGS panel revealed additional RET and CTNNB1 pathogenic missense mutations. Our results demonstrate that molecular abnormalities are common in pediatric TLs and suggest that incorporation of molecular testing will be helpful in optimizing patient management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.