Sulfate attack on concrete has been studied worldwide for more than 60 years. However, the mechanisms of attack are still not entirely understood, and deterioration of concrete from sulfates still occurs. The source of the sulfates may be either external or internal. External sources are the naturally occurring sulfates in the environment or those sulfates that are the product of industrial processes or various human activities (e.g. fertilizers often release sulfates into the soil and groundwater). Internal sources of sulfates may include the sulfates introduced in the cements from which concrete is made. The purpose of this study is to find out the amount of sulfates that concrete can withstand in the water. Standards tests have been developed to evaluate the resistance of concretes to sulfate attack. Some, but not all of these tests, take into account the mechanisms of sulfate attack so far discovered in research work. The tests range from those that monitor changes in the strength of concrete specimens after set periods of immersion in known compositions sulfate solutions, to those that use x- ray diffraction to examine concrete specimens for expansive products (e.g. ettringite and thaumasite) that have resulted from sulfate attack.
The effectiveness of lightweight aggregate (LWA) as an internal curing agent (ICA) to reduce concrete shrinkage is evaluated for repair concrete used in cultural heritage works (RCCHW) using curing periods of 30 days. Normal weight aggregate is replaced by LWA at volume replacement levels ranging from 10 to 14%. The mixtures contain Portland cement maintaining the paste content at approximately 24.1% of concrete volume. Comparisons are made with mixtures containing low-absorption granite and high-absorption limestone normal weight coarse aggregates. At the replacement levels used in this study, LWA results in a small reduction in concrete density, no appreciable effect on concrete compressive strength, and a decrease in concrete shrinkage for drying periods up to 30 days. With a curing period of 14 days, all mixtures with LWA exhibited less shrinkage than the mixtures with either low-or high-absorption normal weight aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.