In this work a coupled model for the production of nanoparticles in an inductively coupled plasma reactor is proposed. A Lagrangian approach is used to describe the evaporation of precursor particles and an Eulerian model accounting for particle nucleation, condensation, and fractal aggregation. The models of the precursor and nanoparticles are coupled with the magneto-hydrodynamic equations describing the plasma. The purpose of this study is to develop a model for the synthesis of particles in a thermal plasma reactor, which can be used to optimize industrial reactors. The growth of aggregates is considered by introducing a power law exponent D f . Results are compared qualitatively and quantitatively with existing experimental data from plasma reactors at a relatively large laboratory scale. The results obtained from the model confirm the previously observed importance of the quench strategy in defining the morphology of the nanoparticles.
The spatially-resolved electron temperature, rotational temperature, and number density of the two metastable Ar 1 s levels were investigated in a miniature RF Ar glow discharge jet at atmospheric pressure. The 1 s level population densities were determined from optical absorption spectroscopy (OAS) measurements assuming a Voigt profile for the plasma emission and a Gaussian profile for the lamp emission. As for the electron temperature, it was deduced from the comparison of the measured Ar 2 p i → 1 s j emission lines with those simulated using a collisional-radiative model. The Ar 1 s level population higher than 10 18 m − 3 and electron temperature around 2.5 eV were obtained close to the nozzle exit. In addition, both values decreased steadily along the discharge axis. Rotational temperatures determined from OH(A) and N 2 (C) optical emission featured a large difference with the gas temperature found from a thermocouple; a feature ascribed to the population of emitting OH and N 2 states by energy transfer reactions involving the Ar 1 s levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.