Using a database of 655 recordings from 58 earthquakes, empirical response spectral attenuation relations are derived for the average horizontal and vertical component for shallow earthquakes in active tectonic regions. A new feature in this model is the inclusion of a factor to distinguish between ground motions on the hanging wall and footwall of dipping faults. The site response is explicitly allowed to be non-linear with a dependence on the rock peak acceleration level. Site Classification The site classification is based on the Geomatrix site class that is given in Table 2. In this study, we have combined Geomatrix site class C and D into a single deep soil site category. The Geomatrix A and B classes (rock and shallow soil) were also combined into a single "rock" site category.
Empirical ground motion models for the average horizontal component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.5, distances 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as those used by Abrahamson and Silva (2008) , with the following exceptions: the loading level for nonlinear effects is based on the spectral acceleration at the period of interest rather than the PGA; and the distance scaling for hanging wall (HW) effects off the ends of the rupture includes a dependence on the source-to-site azimuth. Regional differences in large-distance attenuation and V S30 scaling between California, Japan, China, and Taiwan are included. The scaling for the HW effect is improved using constraints from numerical simulations. The standard deviation is magnitude-dependent, with smaller magnitudes leading to larger standard deviations at short periods, but smaller standard deviations at long periods. Directivity effects are not included through explicit parameters, but are captured through the variability of the empirical data.
Empirical ground-motion models for the rotation-independent average horizontal component from shallow crustal earthquakes are derived using the PEER NGA database. The model is applicable to magnitudes 5-8.5, distances 0 -200 km, and spectral periods of 0-10 sec. In place of generic site categories (soil and rock), the site is parameterized by average shear-wave velocity in the top 30 m ͑V S30 ͒ and the depth to engineering rock (depth to V S = 1000 m / s). In addition to magnitude and style-of-faulting, the source term is also dependent on the depth to top-of-rupture: for the same magnitude and rupture distance, buried ruptures lead to larger short-period ground motions than surface ruptures. The hanging-wall effect is included with an improved model that varies smoothly as a function of the source properties (M, dip, depth), and the site location. The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations. The short-period standard deviation model for soil sites is also distant-dependent due to nonlinear site response, with smaller standard deviations at short distances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.