A spectrophotometric stopped-flow kinetic study of the permanganate ion oxidation of furfural (I) and six 5-substituted furfurals at pH 11.5-13.3 reveals that the reaction follows two reaction paths. The minor pathway (Scheme I) is independent of hydroxyl ion concentration, and the major mechanism (Scheme II) is dependent on the first power of hydroxide ion concentration. Both reaction pathways are first order with respect to the concentration of I and permanganate ion. A correlation of the second-order rate constants with Hammett roeia-substituent constants has been observed for the substituents 5-Me, 5-Et, 5-n-Bu, H, 5-C1, and 5-Br at 25°with p = +1.30 (Scheme II). At pH 13.3 (Scheme II), AH * is 10.2 kcal/mol, AS* is -22.8 eu, and &h/&d is >1.8. Oxygen-18 experiments show that the solvent is the major source of oxygen introduced into I via Scheme II. The kinetic data are consistent with the formation of the hydrate anion of I followed by a hydride anion transfer to permanganate ion in the rate-determining step for the mechanism of Scheme II. It is postulated that the mechanism of Scheme I involves a direct attack of permanganate ion on I to give the permanganate ester, which decomposes in a subsequent slow step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.