Circulating microRNAs (miRNAs) present in the serum/plasma are characteristically altered in many pathological conditions, and have been employed as diagnostic markers for specific diseases. We examined if plasma miRNA levels are altered in patients with traumatic brain injury (TBI) relative to matched healthy volunteers, and explored their potential for use as diagnostic TBI biomarkers. The plasma miRNA profiles from severe TBI patients (Glasgow Coma Scale [GCS] score ≤8) and age-, gender-, and race-matched healthy volunteers were compared by microarray analysis. Of the 108 miRNAs identified in healthy volunteer plasma, 52 were altered after severe TBI, including 33 with decreased and 19 with increased relative abundance. An additional 8 miRNAs were detected only in the TBI plasma. We used quantitative RT-PCR to determine if plasma miRNAs could identify TBI patients within the first 24 h post-injury. Receiver operating characteristic curve analysis indicated that miR-16, miR-92a, and miR-765 were good markers of severe TBI (0.89, 0.82, and 0.86 AUC values, respectively). Multiple logistic regression analysis revealed that combining these miRNAs markedly increased diagnostic accuracy (100% specificity and 100% sensitivity), compared to either healthy volunteers or orthopedic injury patients. In mild TBI patients (GCS score > 12), miR-765 levels were unchanged, while the plasma levels of miR-92a and miR-16 were significantly increased within the first 24 h of injury compared to healthy volunteers, and had AUC values of 0.78 and 0.82, respectively. Our results demonstrate that circulating miRNA levels are altered after TBI, providing a rich new source of potential molecular biomarkers. Plasma-derived miRNA biomarkers, used in combination with established clinical practices such as imaging, neurocognitive, and motor examinations, have the potential to improve TBI patient classification and possibly management.
BackgroundIncreased intracranial pressure (ICP) is a serious, life-threatening, secondary event following traumatic brain injury (TBI). In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology.MethodsIn the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS≤8) with or without incidence of elevated intracranial pressure (ICP). De-identified samples and ELISAs were used to confirm the sensitivity and specificity of IL-6 as a prognostic marker of elevated ICP in both isolated TBI patients, and polytrauma patients with TBI.ResultsConsistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP ≥ 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained ≤20 mm Hg. When blinded samples (n = 22) were assessed, a serum IL-6 cut-off of <5 pg/ml correctly identified 100% of all the healthy volunteers, a cut-off of >128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained ≤20 mm Hg throughout the study period. In contrast, the marker had no prognostic value in predicting elevated ICP in polytrauma patients with TBI. When the levels of serum IL-6 were assessed in patients with orthopedic injury (n = 7) in the absence of TBI, a significant increase was found in these patients compared to healthy volunteers, albeit lower than that observed in TBI patients.ConclusionsOur results suggest that serum IL-6 can be used for the differential diagnosis of elevated ICP in isolated TBI.
The pathophysiology of traumatic brain injury (TBI) is complex and not well understood. Because pathophysiology has ramifications for injury progression and outcome, we sought to identify metabolic cascades that are altered after acute human mild and severe TBI. Because catabolism of branched-chain amino acids (BCAAs; i.e., valine, isoleucine, and leucine) leads to glucose and energy metabolism, and neurotransmitter synthesis and availability, we investigated BCAA metabolites in plasma samples collected within 24 h of injury from mild TBI (Glasgow Coma Scale [GCS] score >12), severe TBI (GCS ≤8), orthopedic injury, and healthy volunteers. We report decreased levels of all three BCAAs in patients with mild TBI relative to healthy volunteers, while these BCAAs levels in patients with severe TBI were further reduced compared with all groups. Orthopedic patients exhibited reductions in BCAA comparable to those in patients with mild TBI. The decrease in patients with mild and severe TBI persisted for derivatives of BCAA catabolic intermediates. Only plasma levels of methylglutarylcarnitine, a derivative of a leucine metabolite, were increased in patients with severe TBI compared with all other groups. Notably, logistic regression combination of three BCAA metabolites whose levels were changed by 24 h post-injury provided prognostic value (area under the curve=0.92) in identifying patients with severe TBI in whom elevated intracranial pressure (≥25 mm Hg) developed. These changes suggest alteration of BCAA metabolism after TBI may contribute to decreased energy production and neurotransmitter synthesis and may contribute to TBI pathophysiology. Supplementation of BCAAs and/or their metabolites may reduce TBI pathology and improve outcome.
Altered cerebral blood flow, cell-matrix interactions, and energy metabolism are secondary pathologies contributing to outcome after traumatic brain injury (TBI). Because L-arginine serves as the precursor for metabolites that are critical to these processes, we measured their plasma levels using LC-MS/GC-MS. Samples were collected from healthy volunteers (n=20), and patients with mild TBI (n=18), severe TBI (n=20), or orthopedic injury without a TBI (n=15), within the first 24 hours of injury. Severe TBI levels of L-arginine, citrulline, ornithine, and hydroxyproline were significantly reduced compared to the other groups. In contrast, the levels of plasma creatine were significantly increased in severe TBI patients compared to healthy volunteers and orthopedic injury subjects. Of interest, the levels of creatine were found to be higher in severe TBI patients (GCS score ≤8) whose intracranial pressure (ICP) remained below 25 mm Hg throughout the 5-day monitoring period, compared to TBI patients (GCS score ≤8) who subsequently developed elevated ICP (≥25 mm Hg). The changes in L-arginine and its metabolite levels were not detected in subjects with mild TBI. The altered levels of arginine and its metabolites may contribute to secondary pathologies following severe TBI, and plasma levels of creatine may have prognostic value in identifying patients at risk for ICP elevation.
Context Catecholamines and inflammatory mediators, with elevated levels after brain death, are associated with reduced function and survival of transplanted organs. Enteral nutrition reduces tissue damage and may benefit organs. Objective To evaluate the effects of immunomodulating enteral nutrition in organ donors. Design Prospective, randomized, open-label study. Setting Intensive care unit. Patients Thirty-six brain-dead organ donors. Interventions Donors were randomized to receive enteral nutrition containing omega-3 polyunsaturated fatty acid, antioxidants, and glutamine or standard care (fasting). Donors received hormonal replacement therapy of corticosteroid, levothyroxine, dextrose, and insulin. Main Outcome Measures Gastrointestinal assimilation (measured by 13carbon-labeled uracil breath analysis), quantity of organs recovered, resting energy expenditure, urine level of urea nitrogen, and serum levels of albumin, prealbumin, interleukin 6, tumor necrosis factor-α, and C-reactive protein were evaluated. Results Thirteen patients (36%) assimilated 13C-labeled uracil. Resting energy expenditure was significantly higher than predicted between 10 and 14 hours after baseline in 33 donors (P = .007). Other measures were not conclusively different between fed and fasting groups. No adverse events occurred that were related to the enteral feeding. Conclusions About 30% of donors metabolized 13C-labeled uracil, although no difference in oxidation rate was found between fasting and fed donors. Corticosteroid administration lowers plasma levels of interleukin 6 and most likely contributes to greater than predicted resting energy expenditure. Thus energy needs may not be met during fasting if hormones are given. Consequences of this possible energy deficit warrant further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.