Flow can induce reversible and irreversible structural changes in dispersions. The analysis of flow effects on microstructure and rheology remains one of the challenging problems in colloid science. The rheological manifestation of flow-induced structural changes is a variable viscosity. If the changes are reversible and time dependent, the effect is called thixotropy. The basic elements of this concept are reviewed here, including its definition and the relation with nonlinear viscoelasticity. The omnipresence of thixotropy is illustrated with a wide range of examples from natural and manmade colloidal systems. Its various rheological manifestations are reviewed as well as possible measurement procedures. The microstructural changes due to flow are quite complex and not fully understood. Existing models for thixotropic suspension rheology are categorized and evaluated.
The electrosteric stabilization of model colloidal dispersions is quantified through high-frequency rheometry and complementary techniques. Model aqueous dispersions with a poly(butyl acrylate)polystyrene core and a layer of poly(methacrylic acid) grafted onto the surface are prepared and characterized. The influence of pH, electrolyte concentration, and amount of polymer in the stabilizing layer on dispersion stability and rheology is investigated. Dynamic light scattering, electrophoretic mobility, and rheology are used to quantify thickness, hydrodynamic permeability, and charge density of the stabilizing shell. A collapsed layer at low pH leads to aggregation after addition of salt, while a swollen layer at high pH induces stability. The colloidal interaction potential is deduced from measurements of the high-frequency elastic modulus using torsional resonators. The complex electrosteric forces are shown to be dominated by the excess osmotic pressure created by overlap of the electrosteric layer for particles in contact. The measured moduli G′ ∞ can be predicted quantitatively based on a simple model for the osmotic repulsion introduced by Vincent et al. [J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.