BackgroundThe Space GlucoseControl system (SGC) is a nurse-driven, computer-assisted device for glycemic control combining infusion pumps with the enhanced Model Predictive Control algorithm (B. Braun, Melsungen, Germany). We aimed to investigate the performance of the SGC in medical critically ill patients.MethodsTwo open clinical investigations in tertiary centers in Graz, Austria and Zurich, Switzerland were performed. Efficacy was assessed by percentage of time within the target range (4.4-8.3 mmol/L; primary end point), mean blood glucose, and sampling interval. Safety was assessed by the number of hypoglycemic episodes (≤2.2 mmol/L) and the percentage of time spent below this cutoff level. Usability was analyzed with a standardized questionnaire given to involved nursing staff after the trial.ResultsForty medical critically ill patients (age, 62 ± 15 years; body mass index, 30.0 ± 8.9 kg/m2; APACHE II score, 24.8 ± 5.4; 27 males; 8 with diabetes) were included for a period of 6.5 ± 3.7 days (n = 20 in each center). The primary endpoint (time in target range 4.4 to 8.3 mmol/l) was reached in 88.3% ± 9.3 of the time and mean arterial blood glucose was 6.7 ± 0.4 mmol/l. The sampling interval was 2.2 ± 0.4 hours. The mean daily insulin dose was 87.2 ± 64.6 IU. The adherence to the given insulin dose advice was high (98.2%). While the percentage of time spent in a moderately hypoglycemic range (2.2 to 3.3 mmol/L) was low (0.07 ± 0.26% of the time), one severe hypoglycemic episode (<2.2 mmol/L) occurred (2.5% of patients or 0.03% of glucose readings).ConclusionsSGC is a safe and efficient method to control blood glucose in critically ill patients as assessed in two European medical intensive care units.
In our single-center, noncontrolled study the eMPC algorithm was a safe and reliable method to control BG in critically medical ICU patients for the whole length of ICU stay.
Background: The objective of this study was to investigate the performance of a newly developed decision support system for the establishment of tight glycemic control in medical intensive care unit (ICU) patients for a period of 72 hours. Methods: This was a single-center, open, non-controlled feasibility trial including 10 mechanically ventilated ICU patients. The CS-1 decision support system (interacting infusion pumps with integrated enhanced model predictive control algorithm and user interface) was used to adjust the infusion rate of administered insulin to normalize blood glucose. Efficacy and safety were assessed by calculating the percentage of values within the target range (80-110 mg/dl), hyperglycemic index, mean glucose, and hypoglycemic episodes (<40 mg/dl).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.