Bacteria were enriched from soil samples with succinate as a carbon source and racemic naproxen nitrile [2-(6-methoxy-2-naphthyl)propionitrile] as sole source of nitrogen. Since naproxen nitrile was only poorly soluble in water media amended with different water-immiscible organic phases were used for the enrichments. With pristane (2,6,10,14-tetramethylpentadecane) as the organic phase two bacterial strains were isolated (strain C3II and strain MP50) which were identified as rhodococci. Cells of both strains converted naproxen nitrile via naproxen amide to naproxen. From racemic naproxen nitrile Rhodococcus sp. C3II formed S-naproxen amide and subsequently S-naproxen. Racemic naproxen amide was hydrolysed to S-naproxen. Rhodococcus sp. MP50 converted racemic naproxen nitrile predominantly to R-naproxen amide and racemic naproxen amide to S-naproxen. With both strains racemic naproxen amide was converted to S-naproxen with an enantiomeric excess > 99% at a conversion rate up to 80% of the theoretical value. In strain C3II the enzymes which hydrolysed naproxen nitrile and naproxen amide were present only at a low constitutive level. In contrast, in Rhodococcus sp. MP50 these activities were induced when grown in the presence of various nitriles.
Abstract. Bacteria were enriched from soil samples, using benzylcyanide, a-methyl-, c~-ethyl-or c~-methoxybenzylcyanide as the sole source of nitrogen. All isolated strains
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.