We develop nonlinear quasi-steady electrorheological (ER) and magnetorheological (MR) damper models using an idealized Bingham plastic shear flow mechanism. Dampers with cylindrical geometry are investigated, where damping forces are developed in an annular bypass via Couette (shear mode), Poiseuille (flow mode) flow, or combined Couette and Poiseiulle flow (mixed mode). Models are based on parallel plate or rectangular duct geometry, and are compared to our prior 1D axisymmetric models. Three nondimensional groups are introduced for damper analysis, namely, the Bingham number, Bi, the nondimensional plug thickness, δ, and the area coefficient defined as the ratio of the piston head area, A p , to the cross-sectional area of the annular bypass, A d . The approximate parallel plate analysis compares well with the 1D axisymmetric analysis when the Bingham number is small, or Bi 1, or the nondimensional plug thickness is small, δ 1. Damper performance is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping constant, C eq , to the Newtonian viscous damping constant, C . In shear mode, the damping coefficient is a linear function of the Bingham number. In flow mode, the damping coefficient is a function of the nondimensional plug thickness only. For the mixed mode damper, the damping coefficient reduces to that for the flow mode case when the area coefficient is large. The quasi-steady damping coefficient versus nondimensional plug thickness diagram is experimentally validated using measured 10 Hz hysteresis cycles for a electrorheological mixed mode damper.
Broad-scale area change of a non-porous surface while maintaining resistance to aerodynamic loading was demonstrated through the development of a passive elastomeric matrix composite morphing skin. The combined system includes an elastomer-fiber-composite surface layer that is supported by a flexible honeycomb structure, each of which exhibit a near-zero in-plane Poisson’s ratio. A number of elastomers, composite arrangements, and substructure configurations were evaluated and characterization testing led to the selection of the most appropriate components for prototype development. The complete prototype morphing skin demonstrated 100% uniaxial extension accompanied by a 100% increase in surface area. Results from out-of-plane pressure loading showed that out-of-plane deflection of less than 0.1 in. (2.5 mm) can be maintained at various levels of area change under pressures of up to 200 psf (9.58 kPa). Applications to wing span morphing UAVs are also discussed.
This paper presents the geometric optimal design of magnetorheological (MR) valves in order to improve valve performance, such as pressure drop. The optimization problem is to find the optimal geometric dimensions of MR valves constrained in a specific volume. After describing the configuration of MR valves, their pressure drops are investigated on the basis of the Bingham model of an MR fluid. Then, the valve ratio, which is an objective function, is derived by considering the field-dependent (controllable) and viscous (uncontrollable) pressure drops of the MR valves. Subsequently, the optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method (FEM) parametric design language. From the constructed optimization tool, optimal solutions of the MR valves, which are constrained in a specific cylindrical volume defined by its radius and height, are calculated and compared with analytical ones. In addition, several different types of MR valves are optimized in the same specific volume and results are presented.
Electrorheological-(ER-) fluid-based dashpot dampers have smart capabilities because ER fluids undergo large changes in yield stress as electric field is applied. Our objective is the development and experimental validation of quasi-steady dashpot damper models, based on an idealized nonlinear Bingham plastic shear flow mechanism, for purposes of preliminary design and performance predictions. The data required for the Bingham plastic model is normally supplied by ER fluid suppliers, that is, plastic viscosity and dynamic yield stress as a function of applied field, as determined from a shear stress versus shear strain rate diagram. As force is applied to the dashpot damper, the ER fluid flows through an annulus between the concentric inner and outer electrodes. The idealized Bingham plastic shear flow mechanism predicts that three annular flow regions develop as a function of the local shear stress. In the central pre-yield or plug region, the local shear stress is less than the dynamic yield stress, so that the plug behaves like a rigid solid. The remaining two annular regions, adjacent to the electrodes, are in the post-yield condition and correspond to the shear stress exceeding the dynamic yield stress, so that the material flows. Equivalent viscous damping performance of an ER fluid dashpot damper is strongly coupled with the plug behavior. For a constant force, as the applied field increases, so does the plug thickness and equivalent viscous damping. For a constant applied field, as the force increases, the plug thickness and equivalent viscous damping both decrease. The passive and active or field-dependent damping behavior of an ER-fluid-based dashpot damper can be designed for a specific application using these quasi-steady Bingham plastic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.