The two primary human inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are idiopathic relapsing disorders characterized by chronic inflammation of the intestinal tract. Although several lines of reasoning suggest that gastrointestinal (GI) microbes influence inflammatory bowel disease (IBD) pathogenesis, the types of microbes involved have not been adequately described. Here we report the results of a cultureindependent rRNA sequence analysis of GI tissue samples obtained from CD and UC patients, as well as non-IBD controls. Specimens were obtained through surgery from a variety of intestinal sites and included both pathologically normal and abnormal states. Our results provide comprehensive molecular-based analysis of the microbiota of the human small intestine. Comparison of clone libraries reveals statistically significant differences between the microbiotas of CD and UC patients and those of non-IBD controls. Significantly, our results indicate that a subset of CD and UC samples contained abnormal GI microbiotas, characterized by depletion of commensal bacteria, notably members of the phyla Firmicutes and Bacteroidetes. Patient stratification by GI microbiota provides further evidence that CD represents a spectrum of disease states and suggests that treatment of some forms of IBD may be facilitated by redress of the detected microbiological imbalances.Crohn's disease ͉ culture-independent microbiology ͉ ulcerative colitis ͉ rRNA
Although the applicability of small subunit ribosomal RNA (16S rRNA) sequences for bacterial classification is now well accepted, the general use of these molecules has been hindered by the technical difficulty of obtaining their sequences. A protocol is described for rapidly generating large blocks of 16S rRNA sequence data without isolation of the 16S rRNA or cloning of its gene. The 16S rRNA in bulk cellular RNA preparations is selectively targeted for dideoxynucleotide-terminated sequencing by using reverse transcriptase and synthetic oligodeoxynucleotide primers complementary to universally conserved 16S rRNA sequences. Three particularly useful priming sites, which provide access to the three major 16S rRNA structural domains, routinely yield 800-1000 nucleotides of 16S rRNA sequence. The method is evaluated with respect to accuracy, sensitivity to modified nucleotides in the template RNA, and phylogenetic usefulness, by examination of several 16S rRNAs whose gene sequences are known. The relative simplicity of this approach should facilitate a rapid expansion of the 16S rRNA sequence collection available for phylogenetic analyses.
Over three decades of molecular-phylogenetic studies, researchers have compiled an increasingly robust map of evolutionary diversification showing that the main diversity of life is microbial, distributed among three primary relatedness groups or domains: Archaea, Bacteria, and Eucarya. The general properties of representatives of the three domains indicate that the earliest life was based on inorganic nutrition and that photosynthesis and use of organic compounds for carbon and energy metabolism came comparatively later. The application of molecular-phylogenetic methods to study natural microbial ecosystems without the traditional requirement for cultivation has resulted in the discovery of many unexpected evolutionary lineages; members of some of these lineages are only distantly related to known organisms but are sufficiently abundant that they are likely to have impact on the chemistry of the biosphere.
Rapid phylogenetic identification of single microbial cells was achieved with a new staining method. Formaldehyde-fixed, intact cells were hybridized with fluorescently labeled oligodeoxynucleotides complementary to 16S ribosomal RNA (rRNA) and viewed by fluorescence microscopy. Because of the abundance of rRNA in cells, the binding of the fluorescent probes to individual cells is readily visualized. Phylogenetic identification is achieved by the use of oligonucleotides (length 17 to 34 nucleotides) that are complementary to phylogenetic group-specific 16S rRNA sequences. Appropriate probes can be composed of oligonucleotide sequences that distinguish between the primary kingdoms (eukaryotes, eubacteria, archaebacteria) and between closely related organisms. The simultaneous use of multiple probes, labeled with different fluorescent dyes, allows the identification of different cell types in the same microscopic field. Quantitative microfluorimetry shows that the amount of an rRNA-specific probe that binds to Escherichia coli varies with the ribosome content and therefore reflects growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.