Betaine-homocysteine methyl transferase (BHMT) catalyzes the synthesis of methionine from betaine and homocysteine (Hcy), utilizing a zinc ion to activate Hcy. BHMT is a key liver enzyme that is important for homocysteine homeostasis. X-ray structures of human BHMT in its oxidized (Zn-free) and reduced (Zn-replete) forms, the latter in complex with the bisubstrate analog, S(delta-carboxybutyl)-L-homocysteine, were determined at resolutions of 2.15 A and 2.05 A. BHMT is a (beta/alpha)(8) barrel that is distorted to construct the substrate and metal binding sites. The zinc binding sequences G-V/L-N-C and G-G-C-C are at the C termini of strands beta6 and beta8. Oxidation to the Cys217-Cys299 disulfide and expulsion of Zn are accompanied by local rearrangements. The structures identify Hcy binding fingerprints and provide a prototype for the homocysteine S-methyltransferase family.
We describe herein the characterization of a major 45-kDa protein from the soluble H-crystallin fraction of rhesus monkey (Macaca mulatta) lens. Based on partial peptide sequence, immunoreactivity, and enzymatic activity, this protein has been identified as betaine-homocysteine S-methyltransferase (BHMT: EC 2.1.1.5), an enzyme that catalyzes the methylation of homocysteine using either betaine or thetins as methyl donors. This protein was found to be expressed abundantly in the nuclear region of the monkey lens, reaching ϳ10% of the total nuclear protein, but was barely detectable in the epithelium and cortex regions of the lens. Because the nucleus represents the early embryonic and fetal stages of lens development, we infer that BHMT expression in the lens of the eye is developmentally regulated. By virtue of its high abundance, BHMT can be considered an enzyme crystallin (-crystallin). This is the first enzyme crystallin to be found in primate lenses.
Using a redox-inert methyl acceptor, we show that betaine-homocysteine S-methyltransferase (BHMT) requires a thiol reducing agent for activity. Short-term exposure of BHMT to reducing agent-free buffer inactivates the enzyme without causing any loss of its catalytic zinc. Activity can be completely restored by the re-addition of a thiol reducing agent. The catalytic zinc of BHMT is bound by three thiolates and one hydroxyl group. Thiol modification experiments indicate that a disulfide bond is formed between two of the three zinc-binding ligands when BHMT is inactive in a reducing agent-free buffer, and that this disulfide can be readily reduced with the concomitant restoration of activity by re-establishing reducing conditions. Long-term exposure of BHMT to reducing agent-free buffer results in the slow, irreversible loss of its catalytic Zn and a corresponding loss of activity. Experiments using the glutamate-cysteine ligase modifier subunit knockout mice Gclm (−/−), which are severely impaired in glutathione synthesis, show that BHMT activity is reduced about 75% in Gclm (−/−) compared to Gclm (+/+) mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.