As fragile food commodities, microbial, and organoleptic qualities of fishery and seafood can quickly deteriorate. In this context, microbial quality and security improvement during the whole food processing chain (from catch to plate), using hurdle technology, a combination of mild preserving technologies such as biopreservation, modified atmosphere packaging, and superchilling, are of great interest. As natural flora and antimicrobial metabolites producers, lactic acid bacteria (LAB) are commonly studied for food biopreservation. Thirty-five LAB known to possess interesting antimicrobial activity were selected for their potential application as bioprotective agents as a part of hurdle technology applied to fishery products. The selection approach was based on seven criteria including antimicrobial activity, alteration potential, tolerance to chitosan coating, and superchilling process, cross inhibition, biogenic amines production (histamine, tyramine), and antibiotics resistance. Antimicrobial activity was assessed against six common spoiling bacteria in fishery products (Shewanella baltica, Photobacterium phosphoreum, Brochothrix thermosphacta, Lactobacillus sakei, Hafnia alvei, Serratia proteamaculans) and one pathogenic bacterium (Listeria monocytogenes) in co-culture inhibitory assays miniaturized in 96-well microtiter plates. Antimicrobial activity and spoilage evaluation, both performed in cod and salmon juice, highlighted the existence of sensory signatures and inhibition profiles, which seem to be species related. Finally, six LAB with no unusual antibiotics resistance profile nor histamine production ability were selected as bioprotective agents for further in situ inhibitory assays in cod and salmon based products, alone or in combination with other hurdles (chitosan, modified atmosphere packing, and superchilling).
Seafood and fishery products are very perishable commodities with short shelf-lives owing to rapid deterioration of their organoleptic and microbiological quality. Microbial growth and activity are responsible for up to 25% of food losses in the fishery industry. In this context and to meet consumer demand for minimally processed food, developing mild preservation technologies such as biopreservation represents a major challenge. In this work, we studied the use of six lactic acid bacteria (LAB), previously selected for their properties as bioprotective agents, for salmon dill gravlax biopreservation. Naturally contaminated salmon dill gravlax slices, with a commercial shelf-life of 21 days, were purchased from a French industrial company and inoculated by spraying with the protective cultures (PCs) to reach an initial concentration of 10 6 log CFU/g. PC impact on gravlax microbial ecosystem (cultural and acultural methods), sensory properties (sensory profiling test), biochemical parameters (pH, TMA, TVBN, biogenic amines) and volatilome was followed for 25 days of storage at 8 • C in vacuum packaging. PC antimicrobial activity was also assessed in situ against Listeria monocytogenes. This polyphasic approach underlined two scenarios depending on the protective strain. Carnobacterium maltaromaticum SF1944, Lactococcus piscium EU2229 and Leuconostoc gelidum EU2249, were very competitive in the product, dominated the microbial ecosystem, and displayed antimicrobial activity against the spoilage microbiota and L. monocytogenes. The strains also expressed their own sensory and volatilome signatures. However, of these three strains, C. maltaromaticum SF1944 did not induce strong spoilage and was the most efficient for L. monocytogenes growth control. By contrast, Vagococcus fluvialis CD264, Carnobacterium inhibens MIP2551 and Aerococcus viridans SF1044 were not competitive, did not express strong antimicrobial activity and produced only few organic volatile compounds (VOCs). However, V. fluvialis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.