Lost workdays due to employee injuries were reduced 96% after Methodist Rehabilitation Center installed ceiling lifts to transfer patients. Credit: Methodist Rehabilitation Center Mississippi,U.S. Radiation Safety Technician at Mount Sinai Hospital checks for contamination after inpatient therapy procedure.
Female construction workers continue to have difficulty accessing properly fitting PPE. Am. J. Ind. Med. 59:1032-1040, 2016. © 2016 Wiley Periodicals, Inc.
Following Hurricane Sandy, which hit New York City and New Jersey in October 2012, industrial hygienists from the Mount Sinai and Belleview/New York University occupational medicine clinics conducted monitoring for diesel exhaust and silica in lower Manhattan and Rockaway Peninsula. Average daytime elemental carbon levels at three stations in lower Manhattan on December 4, 2012, ranged from 9 to18 μg/m(3). Sub-micron particle counts at various times on the same day were over 200,000 particles per cubic centimeter on many streets in lower Manhattan. In Rockaway Peninsula on December 12, 2012, all average daytime elemental carbon levels were below a detection limit of approximately 7 μg/m(3). The average daytime crystalline silica dust concentration was below detection at two sites on Rockaway Peninsula, and was 0.015 mg/m(3) quartz where sand was being replaced on the beach. The daily average levels of elemental carbon and airborne particulates that we measured are in the range of levels that have been found to cause respiratory effects in sensitive subpopulations like asthmatic patients after 2 hr of exposure. Control of exposure to diesel exhaust must be considered following natural disasters where diesel-powered equipment is used in cleanup and recovery. Although peak silica exposures were not likely captured in this study, but were reported by a government agency to have exceeded recommended guidelines for at least one cleanup worker, we recommend further study of silica exposures when debris removal operations or traffic create visible levels of suspended dust from soil or sand.
The use of engineering and work practice controls to protect workers from lead-containing dusts and fumes generated during rehabilitation of steel structures is mandated by the Occupational Safety and Health Administration (OSHA) Lead in Construction Standard (1993). Because the implementation and assessment of controls can be problematic in the rugged and dynamic construction environment, industrial hygienists should understand the effectiveness and limitations of controls adopted. The present investigation assesses the efficacy of two controls to reduce lead exposure: paint removal prior to oxy-acetylene torch cutting of steel, and encapsulation of rivets prior to their removal. A task-based exposure assessment approach was used to evaluate these tasks at three sites. Exposures at one site without controls were compared to exposures at sites with controls. Comparison of the results via an analysis of variance (0.05 significance level) indicates that, for torch cutting, exposures at the control site were not significantly different from those at an uncontrolled site (p = 0.14). The results for rivet busting show no significant differences in exposures at the control site compared to the uncontrolled site (p = 0.08). Results are also presented from two control sites where work was done in enclosed spaces. Two main difficulties in applying the controls are explored: technical and managerial. Technical problems during torch cutting included the penetration of paint into the steel profile and the configuration of the structures. For rivet busting, working within an enclosure was an important factor. Management problems arose both from a lack of coordination among different contractors, and from a failure to provide day-to-day guidance and assessment of the control. Important components of a program to implement controls are preplanning and coordination of control implementation, frequent testing of control efficacy, and a method for timely intervention to correct deficiencies.
This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of paver ventilation systems; diesel fume engineering controls; reduced idling; provision of cabs for the operators; and improved dust suppression systems on the milling machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.