There are many lakes of widely varying morphometry in northern latitudes. For this study region, in the central Mackenzie River valley of western Canada, lakes make up 37% of the landscape. The nonlake components of the landscape are divided into uplands (55%) and wetlands (8%). With such abundance, lakes are important features that can influence the regional climate. This paper examines the role of lakes in the regional surface energy and water balance and evaluates the links to the frequency–size distribution of lakes. The primary purpose is to examine how the surface energy balance may influence regional climate and weather. Lakes are characterized by both the magnitude and temporal behavior of their surface energy balances during the ice-free period. The impacts of combinations of various-size lakes and land–lake distributions on regional energy balances and evaporation cycles are presented. Net radiation is substantially greater over all water-dominated surfaces compared with uplands. The seasonal heat storage increases with lake size. Medium and large lakes are slow to warm in summer. Their large cumulative heat storage, near summer’s end, fuels large convective heat fluxes in fall and early winter. The evaporation season for upland, wetland, and small, medium, and large lakes lasts for 19, 21, 22, 24, and 30 weeks, respectively. The regional effects of combinations of surface types are derived. The region is initially treated as comprising uplands only. The influences of wetland, small, medium, and large lakes are added sequentially, to build up to the energy budget of the actual landscape. The addition of lakes increases the regional net radiation, the maximum regional subsurface heat storage, and evaporation substantially. Evaporation decreases slightly in the first half of the season but experiences a large enhancement in the second half. The sensible heat flux is reduced substantially in the first half of the season, but changes little in the second half. For energy budget modeling the representation of lake size is important. Net radiation is fairly independent of size. An equal area of medium and large lakes, compared with small lakes, yields substantially larger latent heat fluxes and lesser sensible heat fluxes. Lake size also creates large differences in regional flux magnitudes, especially in the spring and fall periods.
Great Slave Lake and Great Bear Lake have large surface areas, water volumes, and high latitudinal positions; are cold and deep; and are subject to short daylight periods in winter and long ones in summer. They are dissimilar hydrologically. Great Slave Lake is part of the Mackenzie Basin flowthrough system. Great Bear Lake is hydrologically isolated in its own relatively small drainage basin and all of its inflow and outflow derive from its immediate watershed. Great Slave Lake's outflow into the Mackenzie River is more than 8 times that from Great Bear Lake. Input from the south via the Slave River provides 82% of this outflow volume. These hydrological differences exert pronounced effects on the thermodynamics, hydrodynamics, and surface climates of each lake. The quantitative results in this study are based on limited datasets from different years that are normalized to allow comparison between the two lakes. They indicate that both lakes have regional annual air temperatures within 2°C of one another, but Great Slave Lake exhibits a much longer open-water period with higher temperatures than Great Bear Lake. During the period when the lakes are warming, each lake exerts a substantial overlake atmospheric cooling, and in the period when the lakes are cooling, each exerts a strong overlake warming. This local cooling and warming cycle is greatest over Great Bear Lake. Temperature and humidity inversions are frequent early in the lake-warming season and very strong lapse gradients occur late in the lake-cooling season. Annually, for both lakes, early ice breakup is matched with late freeze-up. Conversely, late breakup is matched with early freeze-up. The magnitudes of midlake latent heat fluxes (evaporation) and sensible heat fluxes from Great Slave Lake are substantially larger than those from Great Bear Lake during their respective open-water periods. The hypothesis that because they are both large and deep, and are located in high latitudes, Great Slave Lake and Great Bear Lake will exhibit similar surface and near-surface climates that are typical of large lakes in the high latitudes proves invalid because their different hydrological systems impose very different thermodynamic regimes on the two lakes. Additionally, such an extensive north-flowing river system as the Mackenzie is subjected to latitudinally variable meteorological regimes that will differentially influence the hydrology and energy balance of these large lakes. Great Slave Lake is very responsive to climatic variability because of the relation between lake ice and absorbed solar radiation in the high sun season and we expect that Great Bear Lake will be affected in a similar fashion.
The authors studied the error of spatial interpolation in the context of a climatic data gridding project (CLI-GRID). Four objective analysis (QA) techniques were implemented: the empirical techniques of Barnes, Cressman and Shepard, and a Gandin-based statistical technique. These were applied to the interpolation of irregularly distributed daily rainfall data. Spatial resolution of the interpolated arrays was 0.05 degree of latitude by 0.05 degree of longitude.In this experiment, radar rainfall patterns served as reference data for evaluations of O A techniques. Each reference pattern was sampled at the irregularly spaced locations of a climatic rain-gauge network. The sampled data were then input to one of the four OA techniques. The resulting analysis was subtracted from the corresponding reference pattern. Absolute values of the differences were recorded. This sampling-to-difference cycle was repeated with 63 reference patterns. Every map of absolute differences was summed. The resulting map of total errors was normalized by the sum of the reference patterns. Average bias, average RMS error and averages of the ratios of the standard deviations were also computed.All four OA techniques were evaluated separately. The authors recognized that totally unbiased intercomparisons were not possible because of the range in execution parameters for each O A technique. Reasonable efforts were made to minimize subjectivity in the setting of parameters. For application to the specific project grid, the statistical optimal interpolation technique displayed the lowest RMS errors. This technique and Shepard OA, were found more suitable than the other two techniques studied. Statistical and Barnes OA displayed zero average bias and would be useful for areal average computations. The Cressman OA was judged least suitable for interpolation of daily rainfall.An application of the two-dimensional error maps to network analysis was demonstrated by plotting the relationship between interpolation errors and distance (D) from the closest station. Error increased as D 1/2 . It was also verified that error and station density were inversely related. RÉSUMÉ Les auteurs ont étudié V erreur d'interpolation spatiale dans le contexte a" un projet pour le quadrillage de données climatiques « CLI-CRID» . On a implanté quatre techniques d'analyse objective « AO » : les techniques empiriques de Barnes, de Cressman et de Shepard, ainsi qu'une technique statistique du même type que celle de Gandin. On a utilisé celles-ci pour effectuer l'interpolation de données de hauteurs des précipitations espacées irrégulièrement. La résolution spatiale des matrices d'interpolation était de 0,05 degré de latitude par 0,05 degré de longitude. Dans cette expérience, on a utilisé des patrons radar, en tant que données de référence, pour l'évaluation de techniques d'OA. On a échantilloné chaque patron aux positions irrégulières des stations d'un réseau de pluviomètres. On a ensuite fourni ces données échantillonées à l'une des quatres techniques d'AO. On a soustra...
[1] An investigation of high-latitude continental cloud systems was carried out in the interior of the Northwest Territories of Canada during three multiweek periods during the fall, winter, and spring of 1998-1999 as part of the Canadian Global Energy and Water Cycle Experiment (GEWEX) Enhanced Study. Radar data supplemented by satellite, upper air, and surface observations were used to determine the seasonal behavior of cloud macroscopic properties and compare these with similar observations elsewhere. Unique features included the prevalence of multilayered systems, the cold temperatures of low clouds, and a significant diurnal trend in cloud properties in the winter. A synoptic classification was developed and shown to be an important factor in explaining the variability of cloud properties. A consistent picture emerges of the upslope component and wind shear aloft contributing to the cloud structure in five synoptic classes. Vertically resolved cloud properties highlighted the importance of the ice process in these cloud systems. The cloud system reflectivity and temperature dependencies further supported the synoptic characterizations and highlighted the significance of using seasonally based relationships in automated cloud identification algorithms. The implication of the cloud system variability for radiation measurements was also shown. The radar reflectivity data, degraded to match CloudSat resolution and sensitivity, showed that cloud detection was reliable but that there was a positive bias with cloud thickness. Negative biases in cloud top retrievals based on advanced very high resolution radiometer data were also identified. The Global Environmental Multiscale model illustrated some degree of bias in the occurrence and vertical distribution of these cloud systems. Winter situations in general and midclouds situations in particular were the most poorly handled in both the satellite applications and the model simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.