Greenhouse and field studies were conducted to investigate response of two rice varieties, Priscilla and Cocodrie, to sub-lethal rates of glyphosate in terms of injury, shikimate accumulation and yield. In the greenhouse, more shikimate accumulated in Cocodrie than Priscilla at comparable glyphosate rates applied to plants at the three-leaf stage. In field studies, glyphosate was applied to both varieties when they were 74-cm tall and in the internode separation growth stage. Visual injury, plant height, and leaf-tissue samples for shikimate analysis were collected at 3, 7, 14, 21 and 28 days after treatment (DAT). Rice yield was also determined. Noticeable visual injury and height reduction to both varieties was observed as early as 7 and 3 DAT in Cocodrie and Priscilla, respectively. Shikimate levels in leaves began to increase in both varieties by 3 DAT in a dose-dependent manner and reached a peak between 7 and 14 DAT. Elevated shikimate levels were still detectable by 28 DAT. Similar levels of shikimate accumulated in both varieties at comparable glyphosate rates. However, glyphosate treatment at comparable rates reduced rice yields more in Cocodrie than in Priscilla. The highest rate of glyphosate reduced yield in Cocodrie by 92% whereas there was only a 60% yield reduction in Priscilla. Shikimate levels in glyphosate-treated rice were strongly correlated to yield reductions across both varieties and appeared to be a better predictor of yield reduction than was visual injury. Visual injury coupled with measured shikimate levels can be used collaboratively to identify glyphosate exposure and estimate subsequent rice yield reductions.
Studies were conducted in 1997 and 1998 at the Northeast Mississippi Research and Extension Center to investigate the effects of row spacing (76, 38, and 19 cm), soybean population, and three weed management systems on sicklepod growth and seed production. The cultivars ‘Hartz 5088RR’ (glyphosate-tolerant) and ‘Hutcheson’ (a conventional cultivar) were used in two separate studies. The average soybean populations over cultivars and year were 245,000 (low), 481,000 (medium), and 676,000 (high) plants/ha. The three weed management systems were: no (untreated), one, and two herbicide applications. In the glyphosate-tolerant system, one or two postemergence (POST) applications of glyphosate were used, whereas in the conventional system, flumetsulam plus metolachlor preemergence was used alone (single) or followed by chlorimuron POST (sequential). Reducing soybean row spacing from 76 cm, coupled with increased soybean population, reduced sicklepod population up to 80%. Except for Hutcheson in 1998, reducing row spacing and increasing soybean population also reduced sicklepod seed production in both the untreated and the single applications. A single herbicide application reduced sicklepod population up to 68% from untreated plots. However, except for Hartz 5088RR in 1998, the sequential application did not further reduce sicklepod population. In a shading study, partial shading increased sicklepod height but reduced dry weight. However, as shading level increased from 65 to 80 and 95%, height was also reduced.
Growing conditions in the U.S. Midsouth allow for large soybean [Glycine max L. (Merr.)] yields under irrigation, but there is limited information on planting dates (PD) and maturity group (MG) choices to aid in cultivar selection. Analysis of variance across eight (2012) and 10 (2013) locations, four PD, and 16 cultivars (MG 3-6), revealed that the genotype by environment (G×E) interaction accounted for 38 to 22% of the total yield variability. Stability-analysis techniques and probability of low yields were used to investigate this interaction. Planting dates were grouped within early-and late-planting systems. Results showed that MG 4 and 5 cultivars in early-planting systems had the largest average yields, whereas for late-planting systems, late MG 3 to late MG 4 cultivars had the largest yields. Least square means by MG within planting systems at each environment showed that MG 4 cultivars had the greatest yields or were not signi cantly di erent from the MG with the greatest yields in 100% of the environments for both early-and late-planting systems. Yields of MG 5 cultivars were similar to those of MG 4 in 100% of the environments with an early planting but only in 20% of the environments with a late planting. e MG 3 cultivars were the best second choice for late plantings, with similar yields to MG 4 cultivars in 55 to 75% of the environments. ese results have profound implications for MG recommendations in irrigated soybean in the U.S. Midsouth and indicate the need to reconsider common MG recommendations.
A gronomy J our n al • Volume 10 0 , I s sue 3 • 2 0 0 8 635
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.