This paper investigates the factors affecting the impulse characteristics of purposely built grounding systems. We installed 2 m × 2 m grounding systems in four different sites with different soil resistivity values. The effect of impulse polarity on soil characteristics was also investigated for different soil resistivity. A circular ring electrode was used as a return electrode in all four sites. For one of the sites, different configurations of grounding systems were installed to allow the study of the effect of ground electrode configurations on soil characteristics. The aim of this study was to quantify the effects of soil resistivity, impulse polarity, and earth electrode configurations on soil electrical properties under high impulse conditions by field measurements. The new data could be useful in understanding the characteristics of grounding systems in various factors under high impulse conditions. It is hoped that by considering these factors, it can help optimize the design of earthing systems.
In many publications, the characteristics of practical earthing systems were investigated under conditions involving fast-impulse currents of different magnitudes by field measurements. However, as generally known, in practice the transient current can normally reach several tens of kiloamperes. This paper therefore aimed to investigate the characteristics of a new electrode for grounding systems under high current magnitude conditions, and compare it with steady-state test results. The earth electrodes were installed in low resistivity test media, so that high impulse current magnitudes can be achieved. The effects of impulse polarity and earth electrode’s geometry of a new earth electrode were also quantified under high impulse conditions, at high currents (up to 16 kA).
In a recently published work, the characteristics of a new grounding device with spike rods (GDSR) with various arrangements of ground electrodes under high magnitude impulse currents (up to 16 kA), was investigated. In an earlier study, the ground electrodes were installed in low resistivity test media, with resistance at steady state (Rdc) values ranging from 11 Ω to 75 Ω. In practice, various soil resistivity, ranging from a few Ohm-metres to several kiloOhm-metres, have been reported in the standards. It is, therefore, necessary to investigate the characteristics of GDSR with different arrangements of ground electrodes in various soil resistivities under high impulse currents. In this present paper, six configurations of ground electrodes are used, installed at three different sites and subjected to high impulse conditions. Impulse test data of all the grounding systems are analyzed. The Finite Element Method (FEM) is used to compute the electric field values of the ground electrodes achieved. It is found that the highest electric field occurs in the presence of electrodes with the highest Rdc, soil resistivity and current magnitudes. This new data would be useful in bolstering the performance of GDSR in various types of soil resistivities, electrode arrangements and current magnitudes, which may allow for optimum design of grounding systems.
One of the most important parameters of the performance of grounding systems is the soil resistivity. As generally known, the soil resistivity changes seasonally, hence the performance of grounding systems, at DC and under high impulse conditions. This paper presents the performance of grounding systems with two different configurations. Field experiments were set up to study the characteristics of the grounding systems seasonally at power frequency and under high impulse conditions. A review of field testing on practical grounding systems was also presented. It was found that the soil resistivity, RDC and impulse characteristics of grounding systems were improved over time, and the improvement was higher for electrodes that have more contact with the soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.