Hydropower is one of the most sustainable and desirable renewable energy sources. Gravitational water vortex hydro turbine (GWVHT) systems are one of the most suitable and sustainable renewable power generation devices for remote and rural areas, particularly in developing countries, owing to their small scales and low costs. There are various GWVHT systems with different configurations and various operating conditions. The main components of a GWVHT system include the inlet and outlet channels, a basin, and a turbine on which there are a number of blades attached. This paper presents a comprehensive review regarding the progress and development of various GWVHT systems, covering broad aspects of GWVHT systems, particularly various types of basins, inlet and outlet channels, turbines with blades which have different shapes, orientations, sizes, numbers, etc. The nature of the previous studies is summarised. The fundamentals of the vortex dynamics involved and the quantitative analysis of the performance of GWVHT systems are also described. The turbulence models and multiphase models used in some leading numerical simulation studies have been reviewed. As a case study, the implementation of a GWVHT system in PNG is presented. Based on the review of previous studies regarding GWVHT systems, the major issues and challenges are summarised, and some key topics are recommended for future research work on the performance of GWVHT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.