Rhipicephalus microplus is a major bovine ectoparasite that negatively impacts the cattle industry. The acaricidal activity of Datura innoxia ethanolic plant extract against R. microplus, compared with trichlorfon, was examined using the adult immersion test (AIT), and larval packet test (LPT). In vitro acaricidal activity of the selected plant extract against R. microplus engorged females was evaluated at different concentrations (2.5, 5, 10, 20, and 40 mg/mL), and was the same for AIT and LPT. It was further supported by in silico molecular docking of D. innoxia’s 21 phytochemicals against the R. microplus Glutathione S-transferases (RmGST) protein’s three-dimensional (3D) structure predicted by the trRosetta server. The modeled 3D structure was then evaluated and confirmed with PROCHECK, ERRAT, and Verify3D online servers. To predict the binding mechanisms of these compounds, molecular docking was performed using Auto dock Vina software, and molecular dynamic (MD) simulations were used to investigate the protein atom’s dynamic motion. D. innoxia has a relatively higher inhibitory effect on oviposition (from 9.81% to 45.37%) and total larval mortality (42.33% at 24 h and 93.67% at 48 h) at 40 mg/mL. Moreover, the docking results showed that the chemicals norapoatropine and 7-Hydroxyhyoscyamine have strong interactions with active site residues of the target protein, with a docking score of −7.3 and −7.0 Kcal/mol, respectively. The current work also provided a computational basis for the inhibitors of Glutathione S-transferases that were studied in this research work, and this new knowledge should aid in creating new and effective acaricidal chemicals. Furthermore, this plant extract’s acaricide activity and its effect on oviposition and larval mortality were established in this work for the first time, indicating the possible use of this extract in the management of ticks.
Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans further aggravate the situation. Developing innovative, eco-friendly tick management techniques, such as natural products and commodities, is vital. Similarly, searching for effective and feasible treatments for tick-borne diseases is essential. Flavonoids are a class of natural chemicals with multiple bioactivities, including the inhibition of enzymes. We selected eighty flavonoids having enzyme inhibitory, insecticide, and pesticide properties. Flavonoids’ inhibitory effects on the acetylcholinesterase (AChE1) and triose-phosphate isomerase (TIM) proteins of Rhipicephalus microplus were examined utilizing a molecular docking approach. Our research demonstrated that flavonoids interact with the active areas of proteins. Seven flavonoids (methylenebisphloridzin, thearubigin, fortunellin, quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside), rutin, and kaempferol 3-neohesperidoside) were the most potent AChE1 inhibitors, while the other three flavonoids (quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), isorhamnetin, and liquiritin) were the potent inhibitors of TIM. These computationally-driven discoveries are beneficial and can be utilized in assessing drug bioavailability in both in vitro and in vivo settings. This knowledge can create new strategies for managing ticks and tick-borne diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.