Under the current climate change scenario, water stress is one of the key factors that reduce the production of crops. Gibberellic acid (GA3) is an efficient endogenous plant hormone that shows a vital role in plant growth and development. Production of canola (Brassica napus L.) and its oil contents are severely affected under drought stress. The present study was conducted to investigate the potential of GA3 in alleviating drought stress in canola. Three levels of GA3 (G0 = 0 mg L−1, G1 = 100 mg L−1, and G2 = 150 mg L−1) as foliar applications were applied under two drought-stress conditions (D1 for three days of drought stress and D2 for six days of drought stress) on two canola varieties (Punjab canola and Faisal canola). Irrigation was applied after 3 weeks of germination, while foliar application of GA3 was done at intervals of 4 and 5 weeks after germination. When comparing the output of all the GA3 treatments, it was noticed that in G0 = 0 mg L−1 (control plants), water-stress conditions markedly reduced plant production and seed oil contents but increased protein and linoleic acid. With the application of G2 = 150 mg L−1, the maximum values of plant height (90.83 cm), no. of siliqua plant−1 (15.50), seed siliqua−1 (15.55), siliqua length (5.08 cm), relative water contents (77.60%), yield plant−1 (0.46 g), chlorophyll a (0.62), carotenoid contents (39.52), and oleic acid contents (60.20) were recorded under drought stress. Based on these results, it is concluded that the adverse effect of drought stress on different yield parameters of canola could be ameliorated by the exogenous application of GA3 through foliar application at a dose of 150 mg L–1. Moreover, the same treatment improves the quality parameters, i.e., the oleic acid contents of the oil, obtained from the canola.
Brassica napus (Bn) microspore-derived embryogenesis has become a model system to study basic aspects of plant development. Recognized transcription factors governing embryogenesis include: FUSCA3 (FUS3), a member of the plant-specific B3-domain family, and LEAFY COTYLEDON1 (LEC1), a member of the HAP3 subunit of the CCAAT binding factor family. The effects of altered expression of both genes were investigated during microspore-derived embryogenesis in established B. napus lines over-expressing or down-regulating BnLEC1, as well as in tilling lines where BnFUS3 was mutated. While over-expression of BnLEC1 decreases the yield of microspore-derived embryos (MDEs) without affecting their ability to regenerate plants, suppression of BnLEC1 or BnFUS3 reduced both embryo number and regeneration frequency. Embryos produced by these lines showed structural abnormalities accompanied by alterations in the expression of several embryogenesis-marker genes. Oil accumulation was also altered in the transgenic MDEs. Total oil content was increased in MDEs over-expressing BnLEC1 and decreased in those suppressing BnLEC1 or BnFUS3. Mutation of BnFUS3 also resulted in a small but significant increase in linoleic (C18:2) acid. Together this study demonstrates the crucial role of BnLEC1 and BnFUS3 during in vitro embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.