, during the peak of the coronavirus disease 2019 (COVID-19) pandemic in Europe, a cluster of children with hyperinflammatory shock with features similar to Kawasaki disease and toxic shock syndrome was reported in England* (1). The patients' signs and symptoms were temporally associated with COVID-19 but presumed to have developed 2-4 weeks after acute COVID-19; all children had serologic evidence of infection with SARS-CoV-2, the virus that causes COVID-19 (1). The clinical signs and symptoms present in this first cluster included fever, rash, conjunctivitis, peripheral edema, gastrointestinal symptoms, shock, and elevated markers of inflammation and cardiac damage (1). On May 14, 2020, CDC published an online Health Advisory that summarized the manifestations of reported multisystem inflammatory syndrome in children (MIS-C), outlined a case definition, † and asked clinicians to report suspected U.S. cases to local and state health departments. As of July 29, a total of 570 U.S. MIS-C patients who met the case definition had been reported to CDC. A total of 203 (35.6%) of the patients had a clinical course consistent with previously published MIS-C reports, characterized predominantly by shock, cardiac dysfunction, abdominal pain, and markedly elevated inflammatory markers, and almost all had positive SARS-CoV-2 test results. The remaining 367 (64.4%) of MIS-C patients had manifestations that appeared to overlap with acute COVID-19 (2-4), had a less severe clinical course, or had features of Kawasaki disease. § Median duration of hospitalization was 6 days; 364 patients (63.9%) required care in an intensive care * https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatricmultisystem-%20inflammatory%20syndrome-20200501.pdf. † The MIS-C case definition included a patient aged <21 years with fever, laboratory evidence of inflammation, and evidence of clinically severe illness requiring hospitalization, with multisystem organ involvement (cardiovascular, dermatologic, gastrointestinal, hematologic, neurologic, renal, or respiratory) who tested positive for SARS-CoV-2 or had exposure to COVID-19. https:// www.cdc.gov/mis-c/hcp/. § Kawasaki disease is an acute febrile illness of unknown cause, primarily affecting children, and associated with fever, rash, conjunctivitis, redness in the mouth, cracked lips, and swollen lymph nodes, feet, and hands.
BackgroundMethicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment.MethodsWe constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other.ResultsAlthough porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient’s room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient’s room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day.ConclusionsEnvironmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene.
The administration of GPO-VIR S30 fixed-dose combination tablets in fractions or as a whole tablet to children resulted in appropriate NVP exposure and satisfactory virological and immunological benefit. This finding confirms the effectiveness of using a fixed-dose combination as a "transitional option" while waiting for a paediatric fixed-dose combination drug formulation.
We tested 109 unique, vancomycin-susceptible, methicillin-resistant Staphylococcus aureus (MRSA) strains for vancomycin heteroresistance by a selection method, i.e., step-wise exposure of large inoculums to increasing concentrations of vancomycin. Although no strains demonstrated stable heteroresistance, 81 strains (74%) demonstrated unstable heteroresistance. Unstable heteroresistance is common among clinical isolates of MRSA and may represent a cause of therapeutic failure.Heteroresistant vancomycin-intermediate Staphylococcus aureus (hetero-VISA) strains are those for which MICs are conventional (Յ4 g/ml) except when high-density inocula are used; with such inocula, there are minority subpopulations for which MICs are in the intermediate range (8 to 16 g/ml) (13). The detection of hetero-VISA requires inocula containing Ͼ10 6 total bacterial cells, since resistant clones can occur infrequently, being perhaps 1 in 1,000,000 (15). The MICs for the selected, stably heteroresistant clones are conventional, in the 4-to 8-g/ml range (7,17). In addition, unstable heteroresistance can be detected (12, 13). S. aureus clones demonstrating unstable heteroresistance grow in the presence of high concentrations of vancomycin (Ͼ4 g/ml), as shown by step-wise exposure of large inoculums to increasing levels of drug, though conventional MICs for such clones are not elevated; i.e., nonsusceptible clones rapidly revert to normal phenotypes. Unstably hetero-VISA is not detected by usual laboratory antimicrobial tests. Our study was designed to determine the frequency of stable and unstable heteroresistance to vancomycin among unselected methicillin-resistant Staphylococcus aureus (MRSA) strains from adult and pediatric patients at two Chicago tertiary care hospitals.Altogether, 109 MRSA strains from unique patients were randomly collected over a 1-year period, from 15 December 1998 to 14 December 1999. A total of 69 strains were from Evanston Northwestern Healthcare (two adult hospitals), and 40 strains were from the Children's Memorial Hospital.All catalase-positive, gram-positive cocci in clusters were identified as MRSA by yielding positive results in an agglutination test for coagulase/protein A (Murex Biotech Ltd., Dartford, United Kingdom) and growing on 6-g/ml oxacillin agar screening plates (Remel, Lenexa, Kans.). Vancomycin MIC testing was performed on the original unselected strains and the corresponding selected MRSA strains that grew on screening plates containing Ն16 g/ml of vancomycin. MIC testing was performed with Microscan Pos MIC panels (Dade Behring, West Sacramento, Calif.) according to NCCLS methods (10). All panels were read after 24 h of incubation and, for all induced strains, again after 48 h.MRSA strains were subcultured onto 5% sheep blood agar plates and incubated overnight at 35°C. A 0.1-ml sample from a McFarland 2.0 suspension in saline taken from overnight growth was spread evenly on brain heart infusion (BHI) agar containing 2-g/ml vancomycin (Sigma Chemical Co., St. Louis, Mo.) and 4% NaCl, and ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.