This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK) signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M = 2 k ). Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM). An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC) codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.