Background. Donor-derived cell-free DNA (dd-cfDNA) fraction and quantity have both been shown to be associated with allograft rejection. The present study compared the relative predictive power of each of these variables to the combination of the two, and developed an algorithm incorporating both variables to detect active rejection in renal allograft biopsies. Methods. The first 426 sequential indication biopsy samples collected from the Trifecta study ( ClinicalTrials.gov # NCT04239703) with microarray-derived gene expression and dd-cfDNA results were included. After exclusions to simulate intended clinical use, 367 samples were analyzed. Biopsies were assessed using the molecular microscope diagnostic system and histology (Banff 2019). Logistic regression analysis examined whether combining dd-cfDNA fraction and quantity adds predictive value to either alone. The first 149 sequential samples were used to develop a two-threshold algorithm and the next 218 to validate the algorithm. Results. In regression, the combination of dd-cfDNA fraction and quantity was found to be significantly more predictive than either variable alone ( P = 0.009 and P < 0.0001). In the test set, the area under the receiver operating characteristic curve of the two-variable system was 0.88, and performance of the two-threshold algorithm showed a sensitivity of 83.1% and specificity of 81.0% for molecular diagnoses and a sensitivity of 73.5% and specificity of 80.8% for histology diagnoses. Conclusions. This prospective, biopsy-matched, multisite dd-cfDNA study in kidney transplant patients found that the combination of dd-cfDNA fraction and quantity was more powerful than either dd-cfDNA fraction or quantity alone and validated a novel two-threshold algorithm incorporating both variables.
Background. Pancreas graft status in simultaneous pancreas-kidney transplant (SPKTx) is currently assessed by nonspecific biochemical markers, typically amylase or lipase. Identifying a noninvasive biomarker with good sensitivity in detecting early pancreas graft rejection could improve SPKTx management. Methods. Here, we developed a pilot study to explore donor-derived cell-free DNA (dd-cfDNA) performance in predicting biopsy-proven acute rejection (P-BPAR) of the pancreas graft in a cohort of 36 SPKTx recipients with biopsy-matched plasma samples. dd-cfDNA was measured using the Prospera test (Natera, Inc.) and reported both as a fraction of the total cfDNA (fraction; %) and as concentration in the recipient’s plasma (quantity; copies/mL). Results. In the absence of P-BPAR, dd-cfDNA was significantly higher in samples collected within the first 45 d after SPKTx compared with those measured afterward (median, 1.00% versus 0.30%; median, 128.2 versus 35.3 cp/mL, respectively with both; P = 0.001). In samples obtained beyond day 45, P-BPAR samples presented a significantly higher dd-cfDNA fraction (0.83 versus 0.30%; P = 0.006) and quantity (81.3 versus 35.3 cp/mL; P = 0.001) than stable samples. Incorporating dd-cfDNA quantity along with dd-cfDNA fraction outperformed dd-cfDNA fraction alone to detect active rejection. Notably, when using a quantity cutoff of 70 cp/mL, dd-cfDNA detected P-BPAR with a sensitivity of 85.7% and a specificity of 93.7%, which was more accurate than current biomarkers (area under curve of 0.89 for dd-cfDNA (cp/ml) compared with 0.74 of lipase and 0.46 for amylase). Conclusions. dd-cfDNA measurement through a simple noninvasive blood test could be incorporated into clinical practice to help inform graft management in SPKTx patients.
Matrix metalloprotease (MMP) genes encode endopeptidases that cleave protein components of the extracellular matrix (ECM) as well as non-ECM proteins. Here we report the results of a comprehensive survey of MMPs in the laboratory axolotl and other representative salamanders. Surprisingly, 28 MMPs were identified in salamanders and 9 MMP paralogs were identified as unique to the axolotl and other salamander taxa, with several of these presenting atypical amino acid insertions not observed in other tetrapod vertebrates. Furthermore, as assessed by sequence information, all of the novel salamander MMPs are of the secreted type, rather than cell membrane anchored. This suggests that secreted type MMPs expanded uniquely within salamanders to presumably execute catalytic activities in the extracellular milieu. To facilitate future studies of salamander-specific MMPs, we annotated transcriptional information from published studies of limb and tail regeneration. Our analysis sets the stage for comparative studies to understand why MMPs expanded uniquely within salamanders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.