Acoustic droplet vaporization is the ultrasound-mediated phase change of liquid droplets into gas microbubbles. Following the phase change, oxygen diffuses from the surrounding fluid into the microbubble. An in vitro model was used to study the effects of droplet diameter, the presence of an ultrasound contrast agent, ultrasound duty cycle, and droplet concentration on the magnitude of oxygen scavenging in oxygenated deionized water. Perfluoropentane droplets were manufactured through a microfluidic approach at nominal diameters of 1, 3, 5, 7, 9, and 12 µm and studied at concentrations varying from 5.1 × 10−5 to 6.3 × 10−3 mL/mL. Droplets were exposed to an ultrasound transduced by an EkoSonicTM catheter (2.35 MHz, 47 W, and duty cycles of 1.70%, 2.34%, or 3.79%). Oxygen scavenging and the total volume of perfluoropentane that phase-transitioned increased with droplet concentration. The ADV transition efficiency decreased with increasing droplet concentration. The increasing duty cycle resulted in statistically significant increases in oxygen scavenging for 1, 3, 5, and 7 µm droplets, although the increase was smaller than when the droplet diameter or concentration were increased. Under the ultrasound conditions tested, droplet diameter and concentration had the greatest impact on the amount of ADV and subsequent oxygen scavenging occurred, which should be considered when using ADV-mediated oxygen scavenging in therapeutic ultrasounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.