This paper proposes a new, improved method for water flow metering. It applies to a transit time ultrasonic flow meter device. In principle, the flow of a given liquid in a pipe is obtained by measuring the transit times of an ultrasonic wave in the upstream and downstream directions. The difference between these times is, in theory, linearly proportional to the liquid flow velocity. However, the fainter the flow is, the smaller the transit time difference (TTD) is. This difference can be as low as a few picoseconds, which gives rise to many technical difficulties in measuring such a small time difference with a given accuracy. The proposed method relies on measuring the TTD indirectly by computing the phase difference between the steady-state parts of the received signals in the upstream and downstream directions and by using a least-square-sine-fitting technique. This reduces the effect of the jitter noise and the offset, which limit measurement precision at very low flow velocity. The obtained measurement results illustrate the robustness of the proposed method, as we measure the TTD at no-flow conditions, with a precision as low as 10 ps peak-to-peak and a TTD offset of zero, within a temperature range from room temperature to 80˝C. This allows us to reach a smaller minimum detectable flow when compared with previous techniques. The proposed method exhibits a better trade-off between measurement accuracy and system complexity. It can be completely integrated in an ASIC (application specific integrated circuit) or incorporated in a CPU-or micro-controller-based system.
This paper deals with the design and implementation of an improved localization method. The study presented in this paper focuses on the displacement and heading errors. The technique proposed improves considerably on dead reckoning methods by reducing the systematic and non‐systematic errors. Detection of the floor irregularities is the main feature of the designed method in the correction of displacement errors. However, for internal errors correction, a trailing wheel is used. Following that, a predefined trajectory is provided by the control of the trailing wheel deviation angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.