We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 cases and 64,762 controls of European descent, followed by genotyping of top association signals in 60,738 additional individuals. This genomic analysis identified 13 novel loci harboring one or more SNPs that were associated with CAD at P<5×10−8 and confirmed the association of 10 of 12 previously reported CAD loci. The 13 novel loci displayed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6 to 17 percent increase in the risk of CAD per allele. Notably, only three of the novel loci displayed significant association with traditional CAD risk factors, while the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the novel CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
SummaryBackgroundHigh plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.MethodsWe performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FindingsCarriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10−10).InterpretationSome genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.FundingUS National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research.
Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r2 < 0.2) strongly associated with CAD at a 5% false discovery rate (FDR). Together, these variants explain approximately 10.6% of CAD heritability. Of the 46 genome-wide significant lead SNPs, 12 show a significant association with a lipid trait, and 5 show a significant association with blood pressure, but none is significantly associated with diabetes. Network analysis with 233 candidate genes (loci at 10% FDR) generated 5 interaction networks comprising 85% of these putative genes involved in CAD. The four most significant pathways mapping to these networks are linked to lipid metabolism and inflammation, underscoring the causal role of these activities in the genetic etiology of CAD. Our study provides insights into the genetic basis of CAD and identifies key biological pathways.
The Ashcroft scale for the evaluation of bleomycin-induced lung fibrosis is the analysis of stained histological samples by visual assessment. Based on the knowledge that this procedure is not standardized in animals and results are highly variable, we hypothesized that modification of this method may improve quantification of lung fibrosis in small animals. To prove our hypothesis, we evaluated pulmonary fibrosis in Lewis rats induced by a single intratracheal injection of 0.3 mg/kg body weight bleomycin (n = 13) compared with the same amount of saline in a control group (n = 4). We modified the Ashcroft scale by precisely defining the assignment of grades from 0 to 8 for the increasing extent of fibrosis in lung histological samples. Thirty-two observers were randomly assigned to evaluate 108 photographs of slides using either the Ashcroft scale or the modified scale. Consistent with our hypothesis, there was a significant reduction in the variability of standard deviations with the modified scale compared with the Ashcroft scale (mean of variability 0.25 versus 0.62, P < 0.0001). Applying the kappa index, the Ashcroft scale showed only a fair to moderate agreement (0.23-0.59) between the observers and a low intra-observer agreement (0.51-0.74) in contrast to the modified scale, which demonstrated a moderate to good agreement between the observers (0.65-0.93, P < 0.0001) and a high intra-observer agreement (0.87-0.91, P < 0.05). To test the modified scale in vivo, we compared both scales with the results of computed tomography (CT) of the lungs obtained from the same mice. In agreement, the modified scale demonstrated a better correlation to CT scans (R = 0.58) compared with the Ashcroft scale (R = 0.33). In summary, quantification of lung fibrosis in histological lung sections using the modified scale is reliable and reproducible.
This broad replication provides unprecedented evidence for association between genetic variants at chromosome 9p21.3 and risk of CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.