In food, salt has several key roles including conservative and food perception.For this latter, it is well-known that the interaction of sodium with the food matrix modifies the consumer perception. It is then critical to characterize these interactions in various real foods. For this purpose, we exploited the information obtained on both single and double quantum 23 Na nuclear magnetic resonance (NMR) spectroscopies. All salted food samples studied showed strong interactions with the food matrix leading to quadrupolar interactions. However, for some of them, the single quantum analysis did not match the theoretical prediction. This was explained by the presence of another type of sodium population, which did not produce quadrupolar interactions. This finding is of critical importance to perform quantitative magnetic resonance imaging (MRI) and to understand the consumer salty taste perception.
According to various health organizations, the global consumption of salt is higher than recommended and needs to be reduced. Ideally, this would be achieved without losing the taste of the salt itself. In order to accomplish this goal, both at the industrial and domestic levels, we need to understand the mechanisms that govern the final distribution of salt in food. The in-silico solutions in use today greatly over-simplify the real food structure. Measuring the quantity of sodium at the local level is key to understanding sodium distribution. Sodium magnetic resonance imaging (MRI), a non-destructive approach, is the ideal choice for salt mapping along transformational process. However, the low sensitivity of the sodium nucleus and its short relaxation times make this imaging difficult. In this paper, we show how sodium MRI can be used to highlight salt heterogeneities in food products, provided that the temporal decay is modeled, thus correcting for differences in relaxation speeds. We then propose an abacus which shows the relationship between the signal-to-noise ratio of the sodium MRI, the salt concentration, the B0 field, and the spatial and temporal resolutions. This abacus simplifies making the right choices when implementing sodium MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.