Background: Chronic lung allograft dysfunction (CLAD) is the major cause of death beyond 2 years after lung transplantation and develops in 50% of all patients by 5 years post-transplant. CLAD is diagnosed on the basis of a sustained drop of 20% for at least 3 months in the forced expiratory volume (FEV1), compared to the best baseline value achieved post-transplant. CLAD presents as two main phenotypes: bronchiolitis obliterans syndrome (BOS) is more common and has better prognosis than restrictive allograft syndrome (RAS). Respiratory oscillometry is a different modality of lung function testing that is highly sensitive to lung mechanics. The current study investigated whether spectral and intrabreath oscillometry can differentiate between CLAD-free, BOS- and RAS-CLAD at CLAD onset, i.e., at the time of the initial 20% drop in the FEV1.Methods: A retrospective, cross-sectional analysis of 263 double lung transplant recipients who underwent paired testing with oscillometry and spirometry at the Toronto General Pulmonary Function Laboratory from 2017 to 2022 was conducted. All pulmonary function testing and CLAD diagnostics were performed following international guidelines. Statistical analysis was conducted using multiple comparisons.Findings: The RAS (n = 6) spectral oscillometry pattern differs from CLAD-free (n = 225) by right-ward shift of reactance curve similar to idiopathic pulmonary fibrosis whereas BOS (n = 32) has a pattern similar to obstructive lung disease. Significant differences were found in most spectral and intrabreath parameters between BOS, RAS, and time-matched CLAD-free patients. Post-hoc analysis revealed these differences were primarily driven by BOS instead of RAS. While no differences were found between CLAD-free and RAS patients with regards to spectral oscillometry, the intrabreath metric of reactance at end-inspiration (XeI) was significantly different (p < 0.05). BOS and RAS were differentiated by spectral oscillometry measure R5, and intrabreath resistance at end expiration, ReE (p < 0.05 for both).Conclusion: Both spectral and intrabreath oscillometry can differentiate BOS-CLAD from CLAD-free states while intrabreath oscillometry, specifically XeI, can uniquely distinguish RAS-CLAD from CLAD-free. Spectral and intrabreath oscillometry offer complementary information regarding lung mechanics in CLAD patients to help distinguish the two phenotypes and could prove useful in prognostication.
BackgroundChronic lung allograft dysfunction (CLAD) is the major cause of death post-lung transplantation, with acute cellular rejection (ACR) being the biggest contributing risk factor. Although patients are routinely monitored with spirometry, FEV1 is stable or improving in most ACR episodes. In contrast, oscillometry is highly sensitive to respiratory mechanics and shown to track graft injury associated with ACR and its improvement following treatment. We hypothesize that intra-subject variability in oscillometry measurements correlates with ACR and risk of CLAD.MethodsOf 289 bilateral lung recipients enrolled for oscillometry prior to laboratory-based spirometry between December 2017 and March 2020, 230 had ≥ 3 months and 175 had ≥ 6 months of follow-up. While 37 patients developed CLAD, only 29 had oscillometry at time of CLAD onset and were included for analysis. These 29 CLAD patients were time-matched with 129 CLAD-free recipients. We performed multivariable regression to investigate the associations between variance in spirometry/oscillometry and the A-score, a cumulative index of ACR, as our predictor of primary interest. Conditional logistic regression models were built to investigate associations with CLAD.ResultsMultivariable regression showed that the A-score was positively associated with the variance in oscillometry measurements. Conditional logistic regression models revealed that higher variance in the oscillometry metrics of ventilatory inhomogeneity, X5, AX, and R5-19, was independently associated with increased risk of CLAD (p < 0.05); no association was found for variance in %predicted FEV1.ConclusionOscillometry tracks graft injury and recovery post-transplant. Monitoring with oscillometry could facilitate earlier identification of graft injury, prompting investigation to identify treatable causes and decrease the risk of CLAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.