SUMMARYIn this paper we provide both qualitative and quantitative measures of the precision of measuring integrated volatility by realized volatility for a fixed frequency of observation. We start by characterizing for a general diffusion the difference between realized and integrated volatility for a given frequency of observation. Then we compute the mean and variance of this noise and the correlation between the noise and the integrated volatility in the Eigenfunction Stochastic Volatility model of Meddahi (2001a). This model has as special cases log-normal, affine and GARCH diffusion models. Using previous empirical results, we show that the noise is substantial compared with the unconditional mean and variance of integrated volatility, even if one employs five-minute returns. We also propose a simple approach to capture the information about integrated volatility contained in the returns through the leverage effect. We show that in practice, the leverage effect does not matter.
We develop general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit recent nonparametric asymptotic distributional results, are both easy-to-implement and highly accurate in empirically realistic situations. We also illustrate that properly accounting for the measurement errors in the volatility forecast evaluations reported in the existing literature can result in markedly higher estimates for the true degree of return volatility predictability.
Estimation and forecasting for realistic continuous-time stochastic volatility models is hampered by the lack of closed-form expressions for the likelihood. In response, Andersen, Bollerslev, Diebold, and Labys (Econometrica, 71 (2003), 579-625) advocate forecasting integrated volatility via reduced-form models for the realized volatility, constructed by summing high-frequency squared returns. Building on the eigenfunction stochastic volatility models, we present analytical expressions for the forecast efficiency associated with this reduced-form approach as a function of sampling frequency. For popular models like GARCH, multifactor affine, and lognormal diffusions, the reduced form procedures perform remarkably well relative to the optimal (infeasible) forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.