The incidence of oropharyngeal cancers (OPSCCs) has continued to rise over the years, mainly due to human papillomavirus (HPV) infection. Although they were newly reclassified in the last TNM staging system, some groups still relapse and have poor prognoses. Based on their implication in oncogenesis, we investigated the density of cytotoxic and regulatory T cells, macrophages, and Langerhans cells in relation to p16 status, staging and survival of patients. Biopsies from 194 OPSCCs were analyzed for HPV by RT‒qPCR and for p16 by immunohistochemistry, while CD8, FoxP3, CD68 and CD1a immunolabeling was performed in stromal (ST) and intratumoral (IT) compartments to establish optimal cutoff values for overall survival (OS). High levels of FoxP3 IT and CD1a ST positively correlated with OS and were observed in p16-positive and low-stage patients, respectively. Then, their associations with p16 and TNM were more efficient than the clinical parameters alone in describing patient survival. Using multivariate analyses, we demonstrated that the respective combination of FoxP3 or CD1a with p16 status or staging was an independent prognostic marker improving the outcome of OPSCC patients. These two combinations are significant prognostic signatures that may eventually be included in the staging stratification system to develop personalized treatment approaches.
Tumor-associated macrophages are key components of the tumor microenvironment and play important roles in the progression of head and neck cancer, leading to the development of effective strategies targeting immune cells in tumors. Our study demonstrated the prognostic potential of a new scoring system (Macroscore) based on the combination of the ratio and the sum of the high and low densities of M1 (CD80+) and M2 (CD163+) macrophages in a series of head and neck cancer patients, including a training population (n = 54) and a validation population (n = 19). Interestingly, the Macroscore outperformed TNM criteria and p16 status, showing a significant association with poor patient prognosis, and demonstrated significant predictive value for overall survival. Additionally, 3D coculture spheroids were established to analyze the crosstalk between cancer cells and monocytes/macrophages. Our data revealed that cancer cells can induce monocyte differentiation into protumoral M2 macrophages, creating an immunosuppressive microenvironment. This coculture also induced the production of immunosuppressive cytokines, such as IL10 and IL8, known to promote M2 polarization. Finally, we validated the ability of the macrophage subpopulations to induce apoptosis (M1) or support proliferation (M2) of cancer cells. Overall, our research highlights the potential of the Macroscore as a valuable prognostic biomarker to enhance the clinical management of patients and underscores the relevance of a spheroid model in gaining a better understanding of the mechanisms underlying cancer cell–macrophage interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.