Drainage from the 27,316-m2 Jacob K. Javits Convention Center (JJCC) green roof was investigated in the field to quantify the system’s long-term rainfall-runoff response. The JJCC hosts one of the largest extensive green roofs in the United States. Utilizing four years of rooftop monitoring data collected using a weather station, custom designed and built drainage systems, three Parshall flumes equipped with pressure transducers, and weighing lysimeters, this study quantified the 25.4-mm-deep green roof’s ability to decrease the volume and peak rate of runoff. With parameters derived from the site, the Environmental Protection Agency Stormwater Management Model (EPA-SWMM) predicted event total runoff volume and event peak runoff rates to within +10% to −20% and +25% to −15% of the observations, respectively. The analysis further indicated that approximately 55% of the cumulative precipitation that fell on the JJCC extensive green roof during the monitoring period (warm weather months, June 2014–November 2017) was captured and retained. The average percent retained on an event-basis was 77%, and average event runoff coefficient was 0.7, implying a substantial reduction in the volume and rate of runoff generated from the roof compared to the pre-green roof condition, when most, if not all, of the precipitated water would have immediately resulted in runoff. Our research suggests that, on average, 96% of rainfall events 6.35 mm or less were retained within the green roof, whereas 27% of the total event volume was retained for events greater than 12.7 mm in depth. A sensitivity analysis suggests if the substrate depth were increased, better stormwater capture performance would be achieved, but only up 127 mm, whereas increased precipitation coupled with warmer temperatures as a result of climate change could decrease the performance by up to 5%, regardless of substrate depth. An equivalency analysis suggested that even shallow green roofs can significantly reduce the required stormwater detention volume that New York City requires on new development. This particular green roof appears to be more than 18 times as cost-effective as a subsurface cistern would be for managing an equivalent volume of stormwater in Midtown Manhattan.
Identifying sources of concern and risk from shale gas development, particularly from the hydraulic fracturing process, is an important step in better understanding sources of uncertainty within the industry. In this study, a risk assessment of residential exposure pathways to contaminated drinking water is carried out. In this model, it is assumed that a drinking water source is contaminated by a spill of flowback water; probability distributions of spill size and constituent concentrations are fit to historical datasets and Monte Carlo simulation was used to calculate a distribution of risk values for two scenarios: (1) use of a contaminated reservoir for residential drinking water supply and (2) swimming in a contaminated pond. The swimming scenario did not produce risks of concern from a single exposure of 1 h duration, but 11 such 1-h exposures did produce risks of 10−6 due to radionuclide exposure. The drinking water scenario over a 30-year exposure duration produced cancer risk values exceeding 10−6 for arsenic, benzene, benzo(a)pyrene, heptachlor, heptachlor epoxide, pentachlorophenol, and vinyl chloride. However, this extended exposure duration is probably not realistic for exposure by a spill event. Radionuclides produced risks in the residential drinking water scenario of 10−6 in just 8 h, a much more realistic timeline for continual exposure due to a spill event. In general, for contaminants for which inhalation exposure was applicable, this pathway produced the highest risks with exposure from ingestion posing the next greatest risk to human health followed by dermal absorption (or body emersion for radionuclides). Considering non-carcinogenic effects, only barium and thallium exceed target limits, where the ingestion pathway seems to be of greater concern than dermal exposure. Exposure to radionuclides in flowback water, particularly through the inhalation route, poses a greater threat to human health than other contaminants examined in this assessment and should be the focus of risk assessment and risk mitigation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.