Social networks and Internet of things are two paradigms when integrated a new paradigm Internet of Everything is established that has its impact on revolutionizing various fields such as engineering, industry and healthcare. Social networks became nowadays of the most important web services on which people heavily rely, thus became a major source for information extraction for rational decision making considering individuals as social or socio sensors. Furthermore, people using sensors especially biological sensors enabled the use of internet of things technology in building intelligent healthcare systems. One of the challenges facing the design of such systems is the design of an intelligent recommender system that is able to deal with such big data. For that, this paper proposes a framework to develop an enhanced intelligent expert advisor-based health monitoring and disease awareness system. The proposed framework enables the researchers to design advisory systems that are able to observe physiological signals through the use of different bio sensors and integrate it with historical medical data together with the massive data collected from social networks to provide accurate alerts and recommendations for many ailments inspected. The proposed Framework is designed to facilitate generic, dynamic and scalable process of integrating different types of social networks and bio sensors.
Semantic data integration is the process of interrelating information from multiple heterogeneous resources. There is a need for representing data concepts and their relationships to eliminate heterogeneity among different data sources in healthcare management systems. Standardized medical ontologies provide predefined medical vocabulary serving as a stable interface for concepts related to medical data sources. However, different ontologies have different concepts although these concepts have logical relations between them such as the Human Disease Ontology and the Symptoms ontology. There aroused a need for a knowledge graph providing a reliable knowledge base for any intelligent healthcare expert advisor disease prediction system. The knowledge graph provides a model for linking and integrating different concepts having logical relationships such as diseases and their symptoms. Medical online website and encyclopedia provides a reliable source for building such a knowledge graph. The knowledge graph is enriched with social networks data where information extracted reflects a major source of data based on user experiences. The paper proposes a framework for constructing a disease-symptom entity linked knowledge graph based on online medical encyclopedia and social networks user experiences. Entity linking such an integrated knowledge graph with standardized medical ontologies makes it a reliable knowledge base for a standard system that could be used by social networks user and the professional staff.
Semantic data integration provides the ability to interrelate and analyze information from multiple heterogeneous resources. With the growing complexity of medical ontologies and the big data generated from different resources, there is a need for integrating medical ontologies and finding relationships between distinct concepts from different ontologies where these concepts have logical medical relationships. Standardized Medical Ontologies are explicit specifications of shared conceptualization, which provide predefined medical vocabulary that serves as a stable conceptual interface to medical data sources. Intelligent Healthcare systems such as disease prediction systems require a reliable knowledge base that is based on Standardized medical ontologies. Knowledge graphs have emerged as a powerful dynamic representation of a knowledge base. In this paper, a framework is proposed for automatic knowledge graph generation integrating two medical standardized ontologies- Human Disease Ontology (DO), and Symptom Ontology (SYMP) using a medical online website and encyclopedia. The framework and methodologies adopted for automatically generating this knowledge graph fully integrated the two standardized ontologies. The graph is dynamic, scalable, easily reproducible, reliable, and practically efficient. A subgraph for cancer terms is also extracted and studied for modeling and representing cancer diseases, their symptoms, prevention, and risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.