Abstract:The purpose of this paper is to evaluate the extend of the threat zone of two mobile accidental atmospheric releases of chlorine and butane on the I-95 Highway by estimating the downwind dispersion of the chemical plumes using the numerical model ALOHA (Area Locations of Hazardous Atmospheres) and by graphing the boundaries of the threat zone using MARPLOT (Mapping Application for Response, Planning, and Local Operational Tasks). In addition, to assess the risk of exposure at two points of interest from the chlorine accident, and to measure the extent of the flammable zone; the area where a flash fire or a vapor cloud explosion could occur at some point after the release begins, resulting from the butane accident. Moreover, the aim is to study the stability class effect on indoor and outdoor concentrations and its effect on distance of the flammable zones. The paper conclude that the stability class has a significant effect on the prediction of the size of the toxic threat zone under different atmospheric dispersion conditions. In addition, the size of the area impacted after a chemical release depends on the characteristics of the chemical along with the meteorological and atmospheric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.