Social media have become a discussion platform for individuals and groups. Hence, users belonging to different groups can communicate together. Positive and negative messages as well as media are circulated between those users. Users can form special groups with people who they already know in real life or meet through social networking after being suggested by the system. In this article, we propose a framework for recommending communities to users based on their preferences; for example, a community for people who are interested in certain sports, art, hobbies, diseases, age, case, and so on. The framework is based on a feature extraction algorithm that utilizes user profiling and combines the cosine similarity measure with term frequency to recommend groups or communities. Once the data is received from the user, the system tracks their behavior, the relationships are identified, and then the system recommends one or more communities based on their preferences. Finally, experimental studies are conducted using a prototype developed to test the proposed framework, and results show the importance of our framework in recommending people to communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.