Abstract. The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts.
Model-based testing of software and hardware systems uses behavioral and formal models of the systems. The paper presents a technique for model-based black-box conformance testing of real-time systems using Labeled Prioritized Time Petri Nets (LPrTPN). The Timed Input/Output Conformance (tioco) relation, which takes environment assumptions into account, serves as reference to decide of implementation correctness. Test suites are derived automatically from a LPrTPN made up of two concurrent sub-nets that respectively specify the system under test and its environment. The result is optimal in the sense that test cases have the shortest possible accumulated time to be executed. Test cases selection combines test purposes and structural coverage criteria associated with the model. A test purpose or a coverage criterion is specified in a SE-LTL formula. The TIme Petri Net Analyzer TINA has been extended to support concurrent composed subnets. Automatic generation of time-optimal test suites with the Tina toolbox combines the model checker selt and the path analyzer plan. selt outputs a sequence that satisfies the logic formula. plan computes the fastest execution of this sequence which will be transformed in a test cases suite.
The paper presents an approach for model-based black-box conformance testing of preemptive real-time systems using Labeled Prioritized Time Petri Nets with Stopwatches (LPrSwTPN). These models not only specify system/environment interactions and time constraints. They further enable modelling of suspend/resume operations in real-time systems. The test specification used to generate test primitives, to check the correctness of system responses and to draw test verdicts is an LPrSwTPN made up of two concurrent sub-nets that respectively specify the system under test and its environment. The algorithms used in the TINA model analyzer have been extended to support concurrent composed subnets. Relativized stopwatch timed input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Assuming the modelled systems are non deterministic and partially observable, the paper proposes a test generation and execution algorithm which is based on symbolic techniques and implements an online testing policy and outputs test results for the (part of the) selected environment.
Time Petri nets with stopwatches not only model system/environment interactions and time constraints. They further enable modeling of suspend/resume operations in real-time systems. Assuming the modelled systems are non deterministic and partially observable, the paper proposes a test generation approach which implements an online testing policy and outputs test results that are valid for the (part of the) selected environment. A relativized conformance relation named rswtioco is defined and a test generation algorithm is presented. The proposed approach is illustrated on an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.