ZnO thin films were synthesized on silicon and glass substrates using the plasma-enhanced chemical vapor deposition (PECVD) technique. Three samples were prepared at substrates temperatures of 200, 300, and 400 °C. The surface chemical composition was analyzed by the use of X-Ray Photoelectron spectroscopy (XPS). Structural and morphological properties were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties were carried out by UV-visible spectroscopy. XPS spectra showed typical peaks of Zn(2p3/2), Zn(2p1/2), and O(1s) of ZnO with a slight shift attributed to the substrate temperature. XRD analysis revealed hexagonal wurtzite phases with a preferred (002) growth orientation that improved with temperature. Calculation of grain size and dislocation density revealed the crystallization improvement of ZnO when the substrate temperature varied from 200 to 400 °C. SEM images of ZnO films showed textured surfaces composed of grains of spherical shape uniformly distributed. The transmittance yields are reaching 80%, and the values of the band-gap energy indicate that the ZnO films prepared by PECVD present transparent and semiconducting properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.