A better understanding of cancer biology has led to the development of molecular targeted therapy, which has dramatically improved the outcome of some cancer patients, especially when a biomarker of efficacy has been used for patients’ selection. In head and neck oncology, cetuximab that targets epidermal growth factor receptor is the only targeted therapy that demonstrated a survival benefit, both in the recurrent and in the locally advanced settings, yet without prior patients’ selection. We herein review the clinical development of targeted therapy in head and neck squamous cell carcinoma in light of the molecular landscape and give insights in on how innovative clinical trial designs may speed up biomarker discovery and deployment of new molecular targeted therapies. Given the recent approval of immune checkpoint inhibitors targeting programmed cell death-1 in head and neck squamous cell carcinoma, it remains to be determined how targeted therapy will be incorporated into a global drug development strategy that will inevitably incorporate immunotherapy.
Systemic anaplastic large-cell lymphoma (ALCL) is a childhood T cell neoplasm defined by the presence or absence of translocations that lead to the ectopic expression of anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Polychemotherapy involving doxorubicin is the standard first-line treatment but for the 25 to 35% of patients who relapse and develop resistance the prognosis remains poor. We studied the potential role of the microRNA miR-125b in the development of resistance to doxorubicin in NPM-ALK(+) ALCL. Our results show that miR-125b expression is repressed in NPM-ALK(+) cell lines and patient samples through hypermethylation of its promoter. NPM-ALK activity, in cooperation with DNA topoisomerase II (Topo II) and DNA methyltransferase 1 (DNMT1), is responsible for miR-125b repression through DNA hypermethylation. MiR-125b repression was reversed by the inhibition of DNMTs with decitabine or the inhibition of DNA topoisomerase II with either doxorubicin or etoposide. In NPM-ALK(+) cell lines, doxorubicin treatment led to an increase in miR-125b levels by inhibiting the binding of DNMT1 to the MIR125B1 promoter and downregulating the pro-apoptotic miR-125b target BAK1. Reversal of miR-125b silencing, increased miR-125b levels and reduced BAK1 expression also led to a lower efficacy of doxorubicin, suggestive of a pharmacoresistance mechanism. In line with this, miR-125b repression and increased BAK1 expression correlated with early relapse in human NPM-ALK(+) ALCL primary biopsies. Collectively our findings suggest that miR-125b could be used to predict therapeutic outcome in NPM-ALK(+) ALCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.