There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Transplantation of retinal cells has recently provided a promising therapeutic approach for retinal degeneration. Here, we differentiated initially retinal progenitors (RPs) from adherent feeder-free human embryonic stem cells (hESCs) with the use of defined media supplemented with a specific combination of growth factors. The differentiated RPs highly (>80%) expressed related molecular features that included Six3 at an early stage in addition to Crx, Rx, Pax6, Otx2, and Chx10 at later stage. Next, we examined the induction of photoreceptors by Shh and/or the coculture of rabbit retinal pigmented epithelium with hESCs-derived RPs. The differentiation of retinal cells was demonstrated by protein and gene expression in all groups. However, S-Opsin, a cone photoreceptor marker, had higher expression in the presence of Shh, whereas expressions of Gli and Hes1 decreased in the same group. Finally, hESC-derived RPs were treated with Shh transplanted into the subretinal space of sodium iodate-injected albino-type adult rabbits and analyzed 4 weeks later. Transplanted retinal cells survived, migrated into retinal layers, and restored a small but significant B-wave. The grafted cells expressed photoreceptor markers, S-Opsin and Rhodopsin. Our results indicate that putative hESC-derived retinal cells express related genes and proteins. Further, our results show that retinal-like cells can be useful replacements for photoreceptors in retinal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.